Citation: | Liu Guolin, Zeng Yu, Liu Jinhao, Wei Zheng. Study on energy dissipation in the dynamic system of tapping mode atomic force microscope. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(11): 2599-2613. DOI: 10.6052/0459-1879-23-300 |
[1] |
Helena MG, Carlos A, Perez-Madrigal MM. Beyond biology: Alternative uses of cantilever-based technologies. Lab Chip, 2023, 23(5): 1128-1150 doi: 10.1039/D2LC00873D
|
[2] |
Zhang WM, Hu KM, Peng ZK, et al. Tunable micro-and nanomechanical resonators. Sensors, 2015, 15: 26478-26566 doi: 10.3390/s151026478
|
[3] |
Ghaemi N, Nikoobin A, Ashory M. A comprehensive categorization of micro/nanomechanical resonators and their practical applications from an engineering perspective: A review. Advanced Electronic Materials, 2022, 8: 2200229 doi: 10.1002/aelm.202200229
|
[4] |
Zeng JW, Dong YJ, Zhang JR, et al. The trend of structured light-induced force microscopy: A review. Journal of Optics, 2023, 25: 023001 doi: 10.1088/2040-8986/acad8c
|
[5] |
魏征, 郑骁挺, 刘晶等. 轻敲模式下AFM动力学模型及能量耗散机理研究. 力学学报, 2020, 524: 1106-1119 (Wei Zheng, Zheng Xiaoting, Liu Jing, et al. Study on a dynamics model of tapping mode AFM and energy dissipation mechanism. Chinese Journal of Theoretical and Applied Mechanics, 2020, 524: 1106-1119 (in Chinese) doi: 10.6052/0459-1879-20-099
Wei Zheng, Zheng Xiaoting, Liu Jing, et al. Study on a dynamics model of tapping mode AFM and energy dissipation mechanism. Chinese Journal of Theoretical and Applied Mechanics, 2020, 524: 1106-1119(in Chinese)) doi: 10.6052/0459-1879-20-099
|
[6] |
Cleveland JP, Anczykowski B, Schmid AE, et al. Energy dissipation in tapping-mode atomic force microscopy. Applied Physics Letters, 1998, 72(20): 2613-2615 doi: 10.1063/1.121434
|
[7] |
Wei Z, Sun Y, Ding WX, et al. The formation of liquid bridge in different operating modes of AFM. Science China Physics Mechanics & Astronomy, 2016, 59(9): 694611
|
[8] |
Chen XH, Li BW, Liao ZX, et al. Principles and applications of liquid-environment atomic force microscopy. Advanced Materials Interfaces, 2022, 9(35): 2201864 doi: 10.1002/admi.202201864
|
[9] |
Zener C. Internal friction in solids I. Theory of internal friction in reeds. Physics Review, 1937, 52: 230-235
|
[10] |
Hosaka H, Itao K, Kuroda S. Damping characteristics of beamshaped micro-oscillators. Sensors and Actuators A: Physical, 1995, 49(1-2): 87-95 doi: 10.1016/0924-4247(95)01003-J
|
[11] |
Stoffels S, Autizi E, Van HR, et al. Physical loss mechanisms for resonant acoustical waves in boron doped Poly-SiGe deposited with hydrogen dilution. Journal of Applied Physics, 2010, 108: 084517 doi: 10.1063/1.3499319
|
[12] |
Hao Z, Liao B. An analytical study on interfacial dissipation in piezoelectric rectangular block resonators with in-plane longitudinal-mode vibrations. Sensors & Actuators A Physical, 2010, 163(1): 401-409
|
[13] |
Yang JL, Ono T, Esashi M. Energy dissipation in submicrometer thick single-crystal silicon cantilevers. Journal of Microelectromechanical Systems, 2002, 11(6): 775-783 doi: 10.1109/JMEMS.2002.805208
|
[14] |
Imboden M, Mohanty P. Dissipation in nanoelectromechanical systems. Physics Reports, 2014, 534(3): 89-146
|
[15] |
张文明, 闫寒, 彭志科等. 微纳机械谐振器能量耗散机理研究进展. 科学通报, 2017, 62(19): 2077-2093 (Zhang Wenming, Yan Han, Peng Zhike, et al. Research progress on energy dissipation mechanisms in micro- and nano-mechanical resonators. Chinese Science Bulletin, 2017, 62(19): 2077-2093 (in Chinese) doi: 10.1360/N972016-00463
Zhang Wenming, Yan Han, Peng Zhike, et al. Research progress on energy dissipation mechanisms in micro- and nano-mechanical resonators. Chinese Science Bulletin, 2017, 62(19): 2077-2093 (in Chinese) doi: 10.1360/N972016-00463
|
[16] |
Wei Z, Liu J, Zheng XT, et al. Influence of squeeze film damping on quality factor in tapping mode atomic force microscope. Journal of Sound and Vibration, 2021, 491(23): 115720
|
[17] |
Wei Z, Liu J, Wei RH, et al. Theoretical model and experimental study on environmental dissipation mechanism of tapping mode atomic force microscope. Journal of Microscopy, 2021, 283: 219-231 doi: 10.1111/jmi.13035
|
[18] |
魏征, 孙岩, 王再冉等. 轻敲模式下原子力显微镜的能量耗散. 力学学报, 2017, 49(6): 1301-1311 (Wei Zheng, Sun Yan, Wang Zairan, et al. Energy dissipation in tapping mode Atomic Force Microscope. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(6): 1301-1311 (in Chinese) doi: 10.6052/0459-1879-17-223
Wei Zheng, Sun Yan, Wang Zairan, et al. Energy dissipation in tapping mode Atomic Force Microscope. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(6): 1301-1311(in Chinese)) doi: 10.6052/0459-1879-17-223
|
[19] |
Herruzo ET, Garcia R. Frequency response of an atomic force microscope in liquids and air: Magnetic versus acoustic excitation. Applied Physics Letters, 2007, 91(14): 143113 doi: 10.1063/1.2794426
|
[20] |
Chen GY, Warmack RJ, Thundat T, et al. Resonance response of scanning force microscopy cantilevers. Review of Scientific Instruments, 1994, 65(8): 2532-2537 doi: 10.1063/1.1144647
|
[21] |
Lifshitz R, Roukes ML. Thermoelastic damping in micro-and nanomechanical systems. Physical Review B, 2000, 61: 5600-5609
|
[22] |
Ergincan O, Palasantzas G, Kool BJ. Influence of surface modification on the quality factor of microresonators. Physical Review B, 2012, 85: 1-5
|
[23] |
Cleland AN. Foundations of Nanomechanics: From Solid-State Theory to Device Applications. Berlin: Springer-Verlag, 2003: 109-119
|
[24] |
Ghaffari S, Chandorkar SA, Wang S, et al. Quantum limit of quality factor in silicon micro and nano mechanical resonators. Scientific Reports, 2013, 3: 3244 doi: 10.1038/srep03244
|
[25] |
Yasumura KY, Stowe TD, Chow EM, et al. Quality factors in micron- and submicron-thick cantilevers. Journal of Microelectromechanical Systems, 2000, 9(1): 117-125 doi: 10.1109/84.825786
|
[26] |
Jimbo Y, Itao K. Energy loss of a cantilever vibrator. Journal of the Horological Institute of Japan, 1968: 1-15
|
[27] |
Photiadis DM, Judge JA. Attachment losses of high Q oscillators. Applied Physics Letters, 2004, 85: 482-484 doi: 10.1063/1.1773928
|
[28] |
Wang FY, Kong H, Zheng H. The numerical manifold method for harmonic wave propagation in unbounded domains. Engineering Analysis with Boundary Elements, 2022, 145(1): 310-320
|
[29] |
Li YY, Wang R, Zhang, JM. A stepwise artificial boundary condition for wave propagation in elasto-plasticmedia. Soil Dynamics and Earthquake Engineering, 2023, 165: 107733 doi: 10.1016/j.soildyn.2022.107733
|
[30] |
Du Y, Zhang JW. Numerical solutions for nonlocal wave equations by perfectly matched layers II: The two-dimensional case. Journal of Computational Physics, 2023, 488: 112209 doi: 10.1016/j.jcp.2023.112209
|
[31] |
Savidis S, Bergmann M, Schepers W, et al. Wave propagation in inhomogeneous media via FE/PML method. Geotechnik, 2022, 45: 98-107 doi: 10.1002/gete.202100028
|
[32] |
Bindel DS, Govindjee S. Elastic pmls for resonator anchor loss simulation. Journal for Numerical Methods in Engineering, 2005, 64(6): 789-818 doi: 10.1002/nme.1394
|
[33] |
Li P, Ou JY, Yan J. Method for optimising the performance of PML in anchor-loss limited model via COMSOL. IET Science, Measurement & Technology, 2022, 16: 327-336
|
[34] |
Landau LD, Lifshitz EM. 流体动力学. 李值译. 第五版. 北京: 高等教育出版社, 2013: 51-104
Landau LD, Lifshitz EM. Fliuid Mechanics. Li Zhi, Trans. Fifth Edition. Beijing: Higher Education Press, 2013: 51-104 (in Chinese)
|
[35] |
Newell W. Miniaturization of tuning forks. Science, 1968, 161: 1320-1326 doi: 10.1126/science.161.3848.1320
|
[36] |
Bao M, Yang H. Squeeze film air damping in MEMS. Sensors and Actuators A-Physical, 2007, 136(1): 3-27 doi: 10.1016/j.sna.2007.01.008
|
[37] |
Garcia R. Dynamic atomic force microscopy methods. Surface Science Reports, 2002, 47(6-8): 197-301 doi: 10.1016/S0167-5729(02)00077-8
|
[38] |
Wei Z, Zhao YP. Growth of liquid bridge in AFM. Journal of Physics D. Applied Physics, 2007, 40(14): 4368-4375 doi: 10.1088/0022-3727/40/14/036
|
[39] |
Asay DB, Kim SH. Evolution of the adsorbed water layer structure on silicon oxide at room temperature. The Journal of Physical Chemistry B, 2005, 109: 16760-16763 doi: 10.1021/jp053042o
|
[40] |
Beaglehole D, Christenson HK. Vapor adsorption on mica and silicon: Entropy effects, layering, and surface forces. Journal of Physical Chemistry, 1992, 96: 3395-3403 doi: 10.1021/j100187a040
|
[41] |
魏征, 赵爽, 陈少勇等. 原子力显微镜中液桥生成机理探讨. 应用数学和力学, 2015, 36(1): 87-98 (Wei Zheng, Zhao Shuang, Chen Shaoyong, et al. Study of growth mechanisms for the liquid bridge in atomic force microscopes. Applied Mathematics and Mechanics, 2015, 36(1): 87-98 (in Chinese) doi: 10.3879/j.issn.1000-0887.2015.01.008
Wei Zheng, Zhao Shuang, Chen Shaoyong, et al. Study of Growth Mechanisms for the Liquid Bridge in Atomic Force Microscopes. Applied Mathematics and Mechanics, 2015, 36(1): 87-98(in Chinese)) doi: 10.3879/j.issn.1000-0887.2015.01.008
|
[42] |
魏征, 陈少勇, 赵爽等. 原子力显微镜中等容液桥的毛细力分析. 应用数学和力学, 2014, 35(4): 364-376 (Wei Zheng, Chen Shaoyong, Zhao Shuang, et al. Capillary force analysis of medium liquid bridge in atomic force microscopy. Applied Mathematics and Mechanics, 2014, 35(4): 364-376 (in Chinese) doi: 10.3879/j.issn.1000-0887.2014.04.003
Wei Zheng, Chen Shaoyong, Zhao Shuang, et al. Capillary force analysis of medium liquid bridge in atomic force microscopy. Applied Mathematics and Mechanics, 2014, 35(4): 364-376(in Chinese)) doi: 10.3879/j.issn.1000-0887.2014.04.003
|
[43] |
García R. 振幅调制原子力显微术. 程志海, 裘晓辉译. 第一版. 北京: 科学出版社, 2016: 95-99
García R. Amplitude Modulated Atomic Force Microscopy. Cheng Zhihai, Qiu Xiaohui, Trans. First Edition. Beijing: Science Press, 2016: 95-99 (in Chinese)
|
[44] |
Greenspon J. Vibrations of cross-stiffened and sandwich plates with application to underwater sound radiators. Journal of the Acoustical Society of America, 1961, 33(11): 1485-1497 doi: 10.1121/1.1908480
|
[45] |
Butt HJ, Siedle P, Seifert K, et al. Scan speed limit in atomic force microscopy. Journal of Microscopy, 1993, 169: 75-84 doi: 10.1111/j.1365-2818.1993.tb03280.x
|
[1] | Zou Xiang, Zhang Xuanhao, Wang Yanjun, Pan Bing. INTERNAL SPECKLE PATTERN QUALITY ASSESSMENT AND OPTIMAL SELECTION OF VOXEL POINTS FOR DIGITAL VOLUME CORRELATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(7): 1971-1980. DOI: 10.6052/0459-1879-21-158 |
[2] | Wei Zheng, Zheng Xiaoting, Liu Jing, Wei Ruihua. STUDY ON A DYNAMICS MODEL OF TAPPING MODE AFM AND ENERGY DISSIPATION MECHANISM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(4): 1106-1119. DOI: 10.6052/0459-1879-20-099 |
[3] | Yu Han, Zhijun Liu, Yunfeng Wang, Yao Luo, Fengxia Liu, Xiaojuan Wang, Wei Wei, Xiaofei Xu. GAS-LIQUID TWO-PHASE FLOW REGIMES AND IMPACT FACTORS IN T-JUNCTION MICROREACTOR[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 441-449. DOI: 10.6052/0459-1879-18-269 |
[4] | Wei Zheng, Sun Yan, Wang Zairan, Wang Kejian, Xu Xianghong. ENERGY DISSIPATION IN TAPPING MODE ATOMIC FORCE MICROSCOPY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(6): 1301-1311. DOI: 10.6052/0459-1879-17-223 |
[5] | Chen Yun, Jin Yan, Chen Mian. A ROCK BRITTLENESS EVALUATION METHOD BASED ON ENERGY DISSIPATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(6): 984-993. DOI: 10.6052/0459-1879-15-156 |
[6] | Qi Yuan, Huang Junjie, Chen Mingxiang. ENERGY DISSIPATION CHARACTERISTICS OF CRUSHABLE GRANULES UNDER DYNAMIC EXCITATIONS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(2): 252-259. DOI: 10.6052/0459-1879-14-145 |
[7] | Chen Shi, Tao Ying, Shen Shengqiang, Li Dewei. STATIC SPREADING OF DROPLET IMPACT ON SOLID SURFACE:INFLUENCE FACTOR[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(3): 329-335. DOI: 10.6052/0459-1879-14-012 |
[8] | Wu Yongqiang, Duan Li, Li Yongqiang, Kang Qi. GROUND EXPERIMENTS OF BOUYANT THERMOCAPILLARY CONVECTION OF LARGE SCALE LIQUID BRIDGE WITH LARGE PRANDTL NUMBER[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(6): 981-989. DOI: 10.6052/0459-1879-12-148 |
[9] | EXPERIMENTAL STUDY OF MECHANICAL BEHAVIOUR OF TiTi SHAPE MEMORYALLOY[J]. Chinese Journal of Theoretical and Applied Mechanics, 1995, 27(5): 587-596. DOI: 10.6052/0459-1879-1995-5-1995-470 |
[10] | EFFECTS OF ANHARMONICITY AND MASS FACTOR ON MOLECULAR VIBRATIONAL RELAXATION OF DIATOMICS IN CONDENSED STATE[J]. Chinese Journal of Theoretical and Applied Mechanics, 1995, 27(2): 250-252. DOI: 10.6052/0459-1879-1995-2-1995-430 |