Citation: | Peng Xirong, Sui Yunkang. Reserch on universal solution of transforming separable convex programming to dual programming with explicit model. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(10): 2417-2426. DOI: 10.6052/0459-1879-23-267 |
[1] |
Fleury C. Structural weight optimization by dual methods of convex programming. International Journal for Numerical Methods in Engineering, 1979, 14(2): 1761-1783
|
[2] |
Fleury C. Primal and dual methods in structural optimization. Journal of the Structural Division, 1980, 106(5): 1117-1133 doi: 10.1061/JSDEAG.0005418
|
[3] |
Fleury C, Braibant V. Structural optimization: A new dual method using mixed variables. International Journal for Numerical Methods in Engineering, 1986, 23(3): 409-428 doi: 10.1002/nme.1620230307
|
[4] |
钱令希, 钟万勰, 程耿东等. 工程结构优化设计的一个新途径——序列二次规划SQP. 计算结构力学及其应用, 1984, 1(1): 7-20 (Qian Lingxi, Zhong Wanxie, Cheng Gengdong, Sui Yunkang. An approach to structural optimization—sequential quadratic programming SQP. Computational Structural Mechanics and Applications, 1984, 1(1): 7-20 (in Chinese)
Qiang Lingxi, Zhong Wanxie, Cheng Gengdong, Sui Yunkang. An approach to structural optimization - sequential quadratic programming SQP [J]. Computational Structural Mechanics and Applications. 1984, 1(1): 7-20. (in Chinese
|
[5] |
Fleury C. CONLIN: An efficient dual optimizer based on convex approximation concepts. Structural Optimization, 1989, 1(2): 81-89 doi: 10.1007/BF01637664
|
[6] |
Svanberg K. The method of moving asymptotes—A new method for structural optimization. International Journal for Numerical Methods in Engineering, 1987, 24(2): 359-373 doi: 10.1002/nme.1620240207
|
[7] |
Beekers M, Fleury C. A primal-dual approach in truss topology optimization. Computers & Structures, 1997, 64(1-4): 77-88
|
[8] |
Hoppe RHW, Linsenmann C, Petrova SI. Primal-dual Newton methods in structural optimization. Computing and Visualization in Science, 2006, 9(2): 71-87
|
[9] |
隋允康, 阳志光. 应用两点有理逼近改进的牛顿法和对偶法. 大连理工大学学报, 1994, 34(1): 1-9 (Sui Yunkang, Yang Zhiguang. Modified newton's method and dual method through rational approximation at two expanded points. Journal of Dalian University of Technology, 1994, 34(1): 1-9 (in Chinese)
Sui Yunkang, Yang Zhiguang. Modified newton's method and dual method through rational approximation at two expanded points [J]. Journal of Dalian University of Technology. 1994, 34(1): 1-9. (in Chinese))
|
[10] |
隋允康, 邢誉峰, 张桂明. 基于两点累积信息的原/倒变量展开的对偶优化方法. 力学学报, 1994, 26(6): 699-710 (Sui Yunkang, Xing Yufeng, Zhang Guiming. The dual optimization method by original/reciprocal variables' expansion based on cumulative information at two points. Acta Mechanica Sinica, 1994, 26(6): 699-710 (in Chinese)
Sui Yunkang, Xing Yufeng, Zhang Guiming. The dual optimization method by original/reciprocal variables' expansion based on cumulative information at two points [J]. Acta Mechanica Sinica. 1994, 26(6): 699-710. (in Chinese))
|
[11] |
吴京, 刘荣桂, 苏军. 对偶规划法在钢管混凝土拱桥结构优化设计中的应用. 工程力学, 1999, 16(4): 97-104 (Wu Jing, Liu Ronggui, Su Jun. Application of the dual theory to the CFST structure's optimization design. Engineering Mechanics, 1999, 16(4): 97-104 (in Chinese)
Wu Jing, Liu Ronggui, Su Jun. Application of the dual theory to the CFST structure's optimization design [J]. Engineering Mechanics, 1999, 16(04): 97-104. (in Chinese))
|
[12] |
金鹏. 对偶规划法在钢管混凝土拱结构优化设计中的应用. 建筑结构学报, 2001, 22(6): 59-63 (Jin Peng. Optimum design of concrete filled steel tubular arch structure using dual theory. Journal of Building Structures, 2001, 22(6): 59-63 (in Chinese)
Jin Peng. Optimum design of concrete filled steel tubular arch structure using dual theory [J]. Journal of Building Structures. 2001, 22(06): 59-63. (in Chinese))
|
[13] |
Xuan ZC, Shao PG. A programming approach for nonsmooth structural optimization. Advances in Engineering Software, 2000, 31(2): 75-81 doi: 10.1016/S0965-9978(99)00049-6
|
[14] |
Etman LFP, Groenwold AA, Rooda JE. First-order sequential convex programming using approximate diagonal QP subproblems. Structural and Multidisciplinary Optimization, 2012, 45(4): 479-488 doi: 10.1007/s00158-011-0739-3
|
[15] |
Cronje M, Marthinus RN, Munro DP, et al. Brief note on equality constraints in pure dual SAO settings. Structural and Multidisciplinary Optimization, 2019, 59(5): 1853-1861 doi: 10.1007/s00158-018-2149-2
|
[16] |
Liang Y, Cheng GD. Topology optimization via sequential integer programming and Canonical relaxation algorithm. Computer Methods in Applied Mechanics and Engineering, 2019, 348(5): 64-96
|
[17] |
Bendsoe MP, Kikuchi N. Generating optimal topologies in structural design using a homogenization method. Computer Methods in Applied Mechanics and Engineering, 1988, 71(2): 197-224 doi: 10.1016/0045-7825(88)90086-2
|
[18] |
Mlejnek HP. Some aspects of the genesis of structures. Structural Optimization, 1992, 5(1-2): 64-69 doi: 10.1007/BF01744697
|
[19] |
隋允康. 建模·变换·优化———结构综合方法新进展. 大连: 大连理工大学出版社, 1996
Sui Yunkang. Modelling, Transformation, and Optimization—New Developments of Structural Synthesis Method. Dalian: Dalian University of Technology Press, 1996 (in Chinese))
|
[20] |
隋允康, 叶红玲. 连续体结构拓扑优化的ICM方法. 北京: 科学出版社, 2013
Sui Yunkang, Ye Hongling. Continuum Topology Optimization Methods ICM. Beijing: Science Press, 2013 (in Chinese))
|
[21] |
Sui YK Peng XR, Modeling, Solving and Application for Topology Optimization of Continuum Structures: ICM Method Based on Step Function. Cambridge: Elsevier Inc., 2018
|
[22] |
Osher S, Sethian J. Fronts propagating with curvature dependent speed-algorithms based on hamilton-jacobi formulations. J. Comput. Phys., 1988, 79(1): 12-49 doi: 10.1016/0021-9991(88)90002-2
|
[23] |
Wei P, Li ZY, Li XP, et al. An 88-line MATLAB code for the parameterized level set method based topology optimization using radial basis functions. Structural and Multidisciplinary Optimization, 2018, 58(2): 831-849 doi: 10.1007/s00158-018-1904-8
|
[24] |
Norato J, Bendsøe M, Haber R, et al. A topological derivative method for topology optimization. Structural and Multidisciplinary Optimization, 2007, 33(4-5): 375-386 doi: 10.1007/s00158-007-0094-6
|
[25] |
Cai SY, Zhang WH. An adaptive bubble method for structural shape and topology optimization. Computer Methods in Applied Mechanics and Engineering, 2020, 360: 1-25
|
[26] |
Guo X, Zhang WS, Zhang J. Explicit structural topology optimization based on moving morphable components (MMC) with curved skeletons. Computer Methods in Applied Mechanics and Engineering, 2016, 310(10): 711-748
|
[27] |
Zhang WH, Zhao LY, Gao T, et al. Topology optimization with closed B-splines and Boolean operations. Computer Methods in Applied Mechanics and Engineering, 2017, 315(3): 652-670
|
[28] |
隋允康, 彭细荣. 求解一类可分离凸规划的对偶显式模型DP-EM方法. 力学学报, 2017, 49(5): 1135-1144 (Sui Yunkang, Peng Xirong. A dual explicit model based DP-EM method for solving a class of separable convex programming. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(5): 1135-1144 (in Chinese)
Sui Yunkang, Peng Xirong. A dual explicit model based DP-EM method for solving a class of separable convex programming [J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(5): 1135-1144. (in Chinese))
|
[29] |
彭细荣, 隋允康, 叶红玲等. 比较基于化整交融应力拓扑优化诸解法的效果. 力学学报, 2022, 54(2): 459-470 (Peng Xirong, Sui Yunkang, Ye Hongling, et al. Effect comparison of globalization blend based-methods for stess topology optimization. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(2): 459-470 (in Chinese) doi: 10.6052/0459-1879-21-499
Peng Xirong, Sui Yunkang, Ye Hongling, TIE Jun. Effect comparison of globalization blend based-methods for stess topology optimization [J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(2): 459-470. (in Chinese)) doi: 10.6052/0459-1879-21-499
|
[30] |
隋允康, 彭细荣, 叶红玲等. 结构拓扑优化局部性能约束下轻量化问题的互逆规划解法. 计算力学学报, 2021, 38(4): 479-486 (Sui Yunkang, Peng Xirong, Ye Hongling, et al. Reciprocal programming method for structural lightweight topology optimization with local performance constraints. Chinese Journal of Computational Mechanic, 2021, 38(4): 479-486 (in Chinese) doi: 10.7511/jslx20210515409
Sui Yunkang, Peng Xirong, Ye Hongling, Li Zonghan. Reciprocal programming method for structural lightweight topology optimization with local performance constraints [J]. Chinese Journal of Computational Mechanic, 2021, 38(04): 479-486. (in Chinese)) doi: 10.7511/jslx20210515409
|
[31] |
彭细荣, 隋允康, 叶红玲等. K-S函数集成局部性能约束的结构拓扑优化二阶逼近解法. 固体力学学报, 2022, 43(3): 307-317 (Peng Xirong, Sui Yunkang, Ye Hongling, et al. Second-order approximation algorithm of using K-S function to integrate local performance constraints in structural topology optimization. Chinese Journal of Solid Mechnaics, 2022, 43(3): 307-317 (in Chinese)
Peng Xirong, Sui Yunkang, Ye Hongling, Tie Jun. Second-order approximation algorithm of using K-S function to integrate local performance constraints in structural topology optimization [J]. Chinese Journal of Solid Mechnaics, 2022, 43(03): 307-317. (in Chinese))
|
[32] |
彭细荣, 隋允康. 考虑破损−安全的连续体结构拓扑优化ICM方法. 力学学报, 2018, 50(3): 611-621 (Peng Xirong, Sui Yunkang. ICM method for fail-safe topology optimization of continuum structures. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(3): 611-621 (in Chinese) doi: 10.6052/0459-1879-17-366
Peng Xirong, Sui Yunkang. ICM method for fail-safe topology optimization of continuum structures [J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(3): 611-621. (in Chinese)) doi: 10.6052/0459-1879-17-366
|
[1] | Peng Xirong, Sui Yunkang, Zheng Yonggang. ICM METHOD WITH A MAPPING BASED ON NODE-UNCOUPLED TOPOLOGY VARIABLES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(8): 2468-2481. DOI: 10.6052/0459-1879-24-066 |
[2] | Peng Xirong, Sui Yunkang, Ye Hongling, Tie Jun. EFFECT COMPARISON OF GLOBALIZATION BLEND BASED-METHODS FOR STESS TOPOLOGY OPTIMIZATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(2): 459-470. DOI: 10.6052/0459-1879-21-499 |
[3] | Sui Yunkang, Peng Xirong, Ye Hongling, Tie Jun. RECIPROCAL PROGRAMMING THEORY AND ITS APPLICATION TO ESTABLISH A REASONABLE MODEL OF STRUCTURAL TOPOLOGY OPTIMIZATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6): 1940-1948. DOI: 10.6052/0459-1879-19-259 |
[4] | Peng Xirong, Sui Yunkang. ICM METHOD FOR FAIL-SAFE TOPOLOGY OPTIMIZATION OF CONTINUUM STRUCTURES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(3): 611-621. DOI: 10.6052/0459-1879-17-366 |
[5] | Sui Yunkang, Peng Xirong. A DUAL EXPLICIT MODEL BASED DP-EM METHOD FOR SOLVING A CLASS OF SEPARABLE CONVEX PROGRAMMING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(5): 1135-1144. DOI: 10.6052/0459-1879-17-176 |
[6] | Sui Yunkang Xuan Donghai Shang Zhen. ICM method with high accuracy approximation for topology optimization of continuum structures[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(4): 716-725. DOI: 10.6052/0459-1879-2011-4-lxxb2010-503 |
[7] | Jianhua Rong, Sen Ge, Guo Deng, Xiaojuan Xing, Zhijun Zhao. Structural topological optimization based on displacement and stress sensitivity analyses[J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(4): 518-529. DOI: 10.6052/0459-1879-2009-4-2007-540 |
[8] | Jianhua Rong, Xiaojuan Xing, Guo Deng. A structural topological optimization method with variable displacement constraint limits[J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(3): 431-439. DOI: 10.6052/0459-1879-2009-3-2007-418 |
[9] | Yunkang Sui, Hongling Ye, Xirong Peng, Xuesheng Zhang. The ICM method for continuum structural topology optimization with condensation of stress constraints[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(4): 554-563. DOI: 10.6052/0459-1879-2007-4-2006-043 |
[10] | The improvement for the ICM method of structural topology optimization[J]. Chinese Journal of Theoretical and Applied Mechanics, 2005, 37(2): 190-198. DOI: 10.6052/0459-1879-2005-2-2004-286 |