Citation: | Chen Hongyu, Chen Ti. Data-driven identification and control of flexible spacecraft attitude dynamics. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(2): 433-445. DOI: 10.6052/0459-1879-23-259 |
[1] |
Crouch P. Spacecraft attitude control and stabilization: Applications of geometric control theory to rigid body models. IEEE Transactions on Automatic Control, 1984, 29(4): 321-331 doi: 10.1109/TAC.1984.1103519
|
[2] |
Bohn J, Sanyal AK. Almost global finite-time stabilization of rigid body attitude dynamics using rotation matrices. International Journal of Robust and Nonlinear Control, 2016, 26(9): 2008-2022 doi: 10.1002/rnc.3399
|
[3] |
Nazari M, Butcher EA, Sanyal AK. Spacecraft attitude fractional feedback control using rotation matrices and exponential coordinates. Journal of Guidance, Control, and Dynamics, 2018, 41(10): 2185-2198 doi: 10.2514/1.G002956
|
[4] |
Sanyal A, Nordkvist K. Attitude state estimation with multirate measurements for almost global attitude feedback tracking. Journal of Guidance, Control, and Dynamics, 2012, 35(3): 868-880
|
[5] |
Berkane S, Abdessameud A, Tayebi A. Hybrid global exponential stabilization on SO(3). Automatica, 2017, 81: 279-285 doi: 10.1016/j.automatica.2017.04.001
|
[6] |
Wang S, Hoagg JB, Seigler TM. Orientation control on SO(3) with piecewise sinusoids. Automatica, 2019, 100: 114-122 doi: 10.1016/j.automatica.2018.11.007
|
[7] |
龚轲杰. 基于李群SE(3)的航天器姿轨一体化动力学建模与控制. [博士论文]. 长沙: 国防科技大学, 2021
Gong Kejie. Dynamics modeling and control of integrated spacecraft attitude and orbit based on Lie group SE(3). [PhD Thesis]. Changsha: National University of Defense Technology, 2021 (in Chinese))
|
[8] |
He T, Wu Z. Iterative learning disturbance observer based attitude stabilization of flexible spacecraft subject to complex disturbances and measurement noises. IEEE/CAA Journal of Automatica Sinica, 2021, 8(9): 1576-1587 doi: 10.1109/JAS.2021.1003958
|
[9] |
袁利, 姜甜甜, 魏春岭等. 空间控制技术发展与展望. 自动化学报, 2023, 49(3): 476-493 (Yuan Li, Jiang Tiantian, Wei Chunling, et al. Advances and perspectives of space control technology. Acta Automatica Sinica, 2023, 49(3): 476-493 (in Chinese) doi: 10.16383/j.aas.c220792
Yuan Li, Jiang Tian-Tian, Wei Chun-Ling, et. al. Advances and Perspectives of Space Control Technology. Acta Automatica Sinica, 2023, 49(3): 476-493. (in Chinese)) doi: 10.16383/j.aas.c220792
|
[10] |
Koopman BO. Hamiltonian systems and transformation in hilbert space. Proceedings of the National Academy of Sciences of the United States of America, 1931, 17(5): 315-318
|
[11] |
Brunton SL, Brunton BW, Proctor JL, et al. Chaos as an intermittently forced linear system. Nature Communications, 2017, 8(1): 19
|
[12] |
Lan Y, Mezić I. Linearization in the large of nonlinear systems and Koopman operator spectrum. Physica D: Nonlinear Phenomena, 2013, 242(1): 42-53 doi: 10.1016/j.physd.2012.08.017
|
[13] |
Servadio S, Arnas D, Linares R. Dynamics near the three-body libration points via koopman operator theory. Journal of Guidance, Control, and Dynamics, 2022, 45(10): 1800-1814 doi: 10.2514/1.G006519
|
[14] |
李立程. 稳定边界层次中尺度相干结构对湍流影响作用的初步分析. [博士论文]. 兰州: 兰州大学, 2022
Li Licheng. Analysis of sub-mesoscale coherent structures influenced on turbulence in stable boundary Layer. [PhD Thesis]. Lanzhou: Lanzhou University, 2022 (in Chinese))
|
[15] |
Brunton SL, Brunton BW, Proctor JL, et al. Koopman invariant subspaces and finite linear representations of nonlinear dynamical systems for control. PLoS One, 2016, 11(2): e150171
|
[16] |
Schmid PJ. Dynamic mode decomposition of numerical and experimental data. Journal of Fluid Mechanics, 2010, 656: 5-28
|
[17] |
Rowley CW, Igor M, Shervin B, et al. Spectral analysis of nonlinear flows. Journal of Fluid Mechanics, 2009, 641: 115-127
|
[18] |
Williams MO, Kevrekidis IG, Rowley CW. A data-driven approximation of the koopman operator: extending dynamic mode decomposition. Journal of Nonlinear Science, 2015, 25(6): 1307-1346 doi: 10.1007/s00332-015-9258-5
|
[19] |
Dahdah S, Forbes JR. Closed-loop Koopman operator approximation. arXiv: 2303.15318, 2023
|
[20] |
Brunton SL, Proctor JL, Kutz JN. Discovering governing equations from data by sparse identification of nonlinear dynamical systems. Proceedings of the National Academy of Sciences, 2016, 113(15): 3932-3937 doi: 10.1073/pnas.1517384113
|
[21] |
Kaiser E, Kutz JN, Brunton SL. Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society. Mathematical, Physical and Engineering Sciences, 2018, 474: 2219
|
[22] |
Kaiser E, Kutz JN, Brunton SL. Data-driven discovery of Koopman eigenfunctions for control. Machine Learning: Science and Technology, 2021, 2(3): 035023
|
[23] |
Ren C, Jiang H, Li C, et al. Koopman-operator-based robust data-driven control for wheeled mobile robots. IEEE/ASME Transactions on Mechatronics, 2023, 28(1): 461-472
|
[24] |
Korda M, Mezić I. Linear predictors for nonlinear dynamical systems: Koopman operator meets model predictive control. Automatica, 2018, 93: 149-160 doi: 10.1016/j.automatica.2018.03.046
|
[25] |
Zhang X, Pan W, Scattolini R, et al. Robust tube-based model predictive control with Koopman operators. Automatica, 2022, 137: 110114
|
[26] |
Goyal T, Hussain S, Martinez-Marroquin E, et al. Learning Koopman embedding subspaces for system identification and optimal control of a wrist rehabilitation robot. IEEE Transactions on Industrial Electronics, 2023, 70(7): 7092-7101
|
[27] |
Chen T, Shan J. Koopman-operator-based attitude dynamics and control on SO(3). Journal of Guidance, Control, and Dynamics, 2020, 43(11): 2112-2126 doi: 10.2514/1.G005006
|
[28] |
Zinage V, Bakolas E. Koopman operator based modeling for quadrotor control on SE(3). IEEE Control Systems Letters, 2022, 6: 752-757 doi: 10.1109/LCSYS.2021.3085963
|
[29] |
Steven L. Brunton JNK. Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge: Cambridge University Press, 2019
|
[30] |
刘豹, 唐万生. 现代控制理论. 北京: 机械工业出版社, 2006
Liu Bao, Tang Wansheng. Modern Control Theory. Bejing: China Machine Press, 2006 (in Chinese))
|
[31] |
李洋, 仇原鹰, 张军等. 基于SDRE和PPF方法的挠性航天器姿态与振动主动控制研究//2009年中国智能自动化会议, 南京, 2009年9月27-29日
Li Yang, Qiu Yuanying, Zhang Jun, et al. Attitude and active vibration control of flexible spacecraft based on SDRE and PPF methods//2009 China Intelligent Automation Conference, Nanjing, Sept. 27-29, 2009 (in Chinese))
|