Citation: | He Shijie, Wu Yibo, Zhou Shengxi. Design and experiment of a resonant piezoelectric crawling robot. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(9): 1983-1999. DOI: 10.6052/0459-1879-23-225 |
[1] |
Baisch AT, Heimlich C, Karpelson M, et al. HAMR3: An autonomous 1.7 g ambulatory robot//International Conference on Intelligent Robots and Systems. IEEE, 2011: 5073-5079
|
[2] |
Hoffman KL, Wood RJ. Towards a multi-segment ambulatory microrobot//IEEE International Conference on Robotics and Automation. IEEE, 2010: 1196-1202
|
[3] |
Christensen DL, Hawkes EW, Suresh SA, et al. μTugs: Enabling microrobots to deliver macro forces with controllable adhesives//International Conference on Robotics and Automation (ICRA). IEEE, 2015: 4048-4055
|
[4] |
Hawkes EW, Christensen DL, Cutkosky MR. Vertical dry adhesive climbing with a 100 × bodyweight payload//International Conference on Robotics and Automation (ICRA). IEEE, 2015: 3762-3769
|
[5] |
Baisch AT, Sreetharan PS, Wood RJ. Biologically-inspired locomotion of a 2 g hexapod robot//International Conference on Intelligent Robots and Systems. IEEE, 2010: 5360-5365
|
[6] |
Baisch AT, Heimlich C, Karpelson M, et al. HAMR(3): an autonomous 1.7 g ambulatory robot//International Conference on Intelligent Robots and Systems. IEEE, 2011: 5073-5079
|
[7] |
Baisch AT, Ozcan O, Goldberg B, et al. High speed locomotion for a quadrupedal microrobot. The International Journal of Robotics Research, 2014, 33(8): 1063-1082 doi: 10.1177/0278364914521473
|
[8] |
高煜斐, 周生喜. 一种压电驱动的三足爬行机器人. 力学学报, 2021, 53(12): 3354-3365 (Gao Yufei, Zhou Shengxi. A piezoelectric-driven three-legged crawling robot. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(12): 3354-3365 (in Chinese)
Gao Yufei, Zhou Shengxi. A piezoelectric-driven three-legged crawling robot. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(12): 3354-3365(in Chinese))
|
[9] |
Takato M, Tatani M, Oku H, et al. A millimetre-sized robot realized by a piezoelectric impact-type rotary actuator and a hardware neuron model. International Journal of Advanced Robotic Systems, 2014, 11(7): 831-836
|
[10] |
Rios SA, Fleming AJ, Yong YK. Monolithic piezoelectric insect with resonance walking. IEEE-ASME Transactions on Mechatronics, 2018, 23(2): 524-530 doi: 10.1109/TMECH.2018.2792618
|
[11] |
Rios SA, Fleming AJ, Yong YK, et al. Design and characterization of a miniature monolithic piezoelectric hexapod robot//2016 IEEE International Conference on Advanced Intelligent Mechatronics . 2016: 982-986
|
[12] |
Graule MA, Chirarattananon P, Fuller SB, et al. Perching and takeoff of a robotic insect on over hangs using switchable electrostatic adhesion. Science, 2016, 352(6288): 978-982 doi: 10.1126/science.aaf1092
|
[13] |
Hariri HH, Soh GS, Foong SH, et al. Locomotion study of a standing wave driven piezoelectric miniature robot for bi-directional motion. IEEE Transactions on Robotic, 2017, 33(3): 742-747 doi: 10.1109/TRO.2017.2656902
|
[14] |
Rios SA, Fleming AJ, Yong YK. Miniature resonant ambulatory robo. IEEE Robotics and Automation Letters, 2016, 2(1): 337-343
|
[15] |
蒋振宇, 李伟达, 祝宇虹. 一种谐振式微小型机器人移动机构. 压电与声光, 2010, 32(4): 625-628 (Jiang Zhenyu, Li Weida, Zhu Yuhong. A resonant micro-small robot moving mechanism. Piezoelectric and Acoustic Light, 2010, 32(4): 625-628 (in Chinese)
Jiang Zhenyu, Li Weida, Zhu Yuhong. A resonant micro-small robot moving mechanism. Piezoelectric and Acoustic Light, 2010, 32 (04): 625-628(in Chinese)
|
[16] |
孙立宁, 李伟达, 蒋振宇等. 一种单构件双运动机理微小型机器人移动机构. 机器人, 2010, 32(1): 41-47 (Sun Lining, Li Weida, Jiang Zhenyu, et al. A single component dual motion mechanism micro robot moving mechanism. Robot, 2010, 32(1): 41-47 (in Chinese) doi: 10.3724/SP.J.1218.2010.00041
Sun Lining, Li Weida, Jiang Zhenyu, et al. A single component dual motion mechanism micro robot moving mechanism. Robot, 2010, 32(01): 41-47(in Chinese)) doi: 10.3724/SP.J.1218.2010.00041
|
[17] |
李魁, 徐鉴. 压电谐振驱动三足机器人的平面运动. 动力学与控制学报, 2015, 13(6): 454-461 (Li Kui, Xu Jian. Piezoelectric resonance drives the plane motion of a three-legged robot. Journal of Dynamics and Control, 2015, 13(6): 454-461 (in Chinese)
Li Kui, Xu Jian. Piezoelectric resonance drives the plane motion of a three - legged robot. Journal of Dynamics and Control, 2015, 13(6): 454-461(in Chinese))
|
[18] |
郑龙龙, 李朝东. 压电双晶驱动器驱动八足机器人的研制. 工业控制计算机, 2018, 31(6): 146-147 (Zheng Longlong, Li Chaodong. Piezoelectric dual crystal drive drives the development of eight-legged robots. Industrial Control Computer, 2018, 31(6): 146-147 (in Chinese)
Zheng Longlong, Li Chaodong. Piezoelectric dual crystal drive drives the development of eight-legged robots. Industrial Control Computer, 2018, 31(06): 146-147(in Chinese))
|
[19] |
郑龙龙, 李朝东. 压电仿生八足机器人的研究. 计量与测试技术, 2018, 45(5): 41-44 (Zheng Longlong, Li Chaodong. Research on piezo bionic octal robots. Measurement and Testing Technology, 2018, 45(5): 41-44 (in Chinese)
Zheng Longlong, Li Chaodong. Research on piezo bionic octal robots. Measurement and Testing Technology, 2018, 45(5): 41-44(in Chinese))
|
[20] |
陈畅, 张卫平, 邹阳等. 压电驱动的六足爬行机器人的设计与制造. 压电与声光, 2018, 40(5): 700-703 (Chen Chang, Zhang Weiping, Zou Yang, et al. The design and manufacture of piezoelectrically driven six-legged crawling robots. Piezoelectric and Acoustic Light, 2018, 40(5): 700-703 (in Chinese)
Chen Chang, Zhang Weiping, Zou Yang, et al. The design and manufacture of piezoelectrically driven six-legged crawling robots. Piezoelectric and Acoustic Light, 2018, 40(5): 700-703(in Chinese))
|
[21] |
陈畅. 基于压电驱动的微型六足爬行机器人的设计与制造. [硕士论文]. 上海: 上海交通大学大学, 2018
Cheng Chang. Design and test of micro-resonant multi-footed piezoelectric robots. [Master Thesis]. Shanghai: Shanghai Jiao Tong University, 2018 (in Chinese))
|
[22] |
李一帆, 张卫平, 邹阳等. 压电式微型仿生六足分节机器人结构设计与加工工艺研究. 机械设计与制造, 2017, 311(S1): 213-216 (Li Yifan, Zhang Weiping, Zou Yang, et al. Piezoelectric micro-bionic six-foot section robot structure design and processing process research. Mechanical Design and Manufacturing, 2017, 311(S1): 213-216 (in Chinese)
Li Yifan, Zhang Weiping, Zou Yang, et al. Piezoelectric micro-bionic six-foot section robot structure design and processing process research. Mechanical Design and Manufacturing, 2017 (S1): 213-216(in Chinese))
|
[23] |
李京. 微小型谐振式多足压电机器人设计及试验. [硕士论文]. 哈尔滨: 哈尔滨工业大学, 2020
Li Jing. Design and test of micro-resonant multi-footed piezoelectric robots. [Master Thesis]. Harbin: Harbin University of Technology, 2020 (in Chinese))
|
[24] |
Peng H, Yang J, Lu X, et al. A lightweight surface milli-walker based on piezoelectric actuation. IEEE Transactions on Industrial Electronics, 2018, 66(10): 7852-7860
|
[25] |
卢鹏辉. 一种小型无倾翻失效压电爬行机器人系统的研究. [硕士论文]. 南京: 南京航空航天大学, 2020
Lu Penghui. Research on a small piezoelectric crawling robot system without tipping failure. [Master Thesis]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2020 (in Chinese))
|
[26] |
Li J, Deng J, Zhang S, et al. Development of a miniature quadrupedal piezoelectric robot combining fast speed and nano-resolution. International Journal of Mechanical Sciences, 2023, 250: 108276 doi: 10.1016/j.ijmecsci.2023.108276
|
[27] |
Deng J, Yang CL, Liu YX, et al. Design and experiments of a small resonant inchworm piezoelectric robot. Science China Technological Sciences, 2023, 66(3): 821-829 doi: 10.1007/s11431-022-2223-1
|
[28] |
Chen E, Yang Y, Li M, et al. Bio-mimic, fast-moving, and flippable soft piezoelectric robots. Advanced Science, 2023, 10(20): 2300673
|
[29] |
曾祥莉. 压电材料驱动柔性行走机构的理论与试验研究. [硕士论文]. 吉林: 吉林大学, 2020
Zheng Xiangli. Theoretical and experimental research on flexible walking mechanism driven by piezoelectric materials. [Master Thesis]. Jilin: Jinlin University, 2020 (in Chinese))
|
[30] |
Hu Y, Wang R, Wen J, et al. A low-frequency structure-control-type inertial actuator using miniaturized bimorph piezoelectric vibrators. IEEE Transactions on Industrial Electronics, 2018, 66(8): 6179-6188
|
[31] |
苟文选. 材料力学(第三版). 北京: 科学出版社, 2017: 125-126
Gou Wenxuan. Materials Mechanics (Third Edition). Beijing: Science Press, 2017: 125-126 (in Chinese))
|
[32] |
Nader Jalili. 基于压电材料的振动控制——从宏观系统到微纳米系统. 赵丹, 刘少刚, 冯立锋译. 北京: 国防工业出版社, 2017: 152-162
Nader Jalili. Piezoelectric-Based Vibration Control—From Macro to Micro/Nano Scale Systems. Zhao Dan, Liu Shaogang, Feng Lifeng, translated. Beijing: National Defense Industry Press, 2017: 152-162 (in Chinese)
|
[33] |
刘延柱, 陈立群, 陈文良. 振动力学 (第三版). 北京: 高等教育出版社, 2019: 258-260
Liu Yanzhu, Chen Liqun, Chen Wenliang. Vibration Mechanics (Third Edition). Beijing: Higher Education Press, 2019: 258-260 (in Chinese))
|
[34] |
徐芝纶. 弹性力学 (第五版). 北京: 高等教育出版社, 2016: 120-122
Xu Zhilun. Elastic Mechanics (Fifth Edition). Beijing: Higher Education Press, 2016: 120-122 (in Chinese))
|
[35] |
李伟达. 基于碰撞与黏滑复合驱动的微小型机器人移动机构研究. [博士论文]. 哈尔滨: 哈尔滨工业大学, 2011: 50-55
Li Weida. Research on the moving mechanism of micro robot based on collision and stick-slip composite drive. [PhD Thesis]. Harbin: Harbin Institute of Technology, 2011: 37-42 (in Chinese))
|
[36] |
梁婷婷. 基于Quanser半实物仿真实验平台的控制系统研究与实现. [硕士论文]. 沈阳: 东北大学, 2016: 1-2
Li Weida. Research and implementation of control system based on Quanser semi physical simulation experimental platform. [Master Thesis]. Shenyang: Northeastern University, 2011: 37-42 (in Chinese))
|
[1] | Gao Shuyue, Liu Yang, Liu Shutian. TOPOLOGY OPTIMIZATION-BASED METHOD FOR LIGHTWEIGHT AND THIN DESIGN OF ADDITIVE MANUFACTURING SILICON CARBIDE PRIMARY MIRROR[J]. Chinese Journal of Theoretical and Applied Mechanics. DOI: 10.6052/0459-1879-25-102 |
[2] | Huang Xinyu, Tang Huayuan, Wang Lei. RECENT PROGRESS ON SOME FUNDAMENTAL MECHANICAL PROPERTIES OF TPMS STRUCTURES BASED ON ADDITIVE MANUFACTURING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(11): 3099-3115. DOI: 10.6052/0459-1879-24-205 |
[3] | Niu Yangyang, Li Tong, Zhou Wenbo, Sheng Donglin, Yan Amin, Cao Fuhua, Chen Yan, Wang Haiying, Dai Lanhong. SHOCK COMPRESSION EQUATION OF STATE AND DYNAMIC DEFORMATION MECHANISM OF ADDITIVE MANUFACTURED Ti6Al4V TITANIUM ALLOY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(8): 1673-1685. DOI: 10.6052/0459-1879-23-175 |
[4] | Xi Yu, Zhang Qiang, Zhang Xinyue, Liu Xiaochuan, Guo Yazhou. DYNAMIC MECHANICAL BEHAVIOR OF ADDITIVE MANUFACTURING TC4 ALLOY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(2): 425-444. DOI: 10.6052/0459-1879-21-418 |
[5] | Yi Min, Chang Ke, Liang Chenguang, Zhou Liucheng, Yang Yangyiwei, Yi Xin, Xu Baixiang. COMPUTATIONAL STUDY OF EVOLUTION AND FATIGUE DISPERSITY OF MICROSTRUCTURES BY ADDITIVE MANUFACTURING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(12): 3263-3273. DOI: 10.6052/0459-1879-21-389 |
[6] | Xiao Wenjia, Xu Yuxiang, Song Lijun. PHASE-FIELD STUDY ON THE EVOLUTION OF MICROSTRUCTURE OF THE MOLTEN POOL FOR ADDITIVE MANUFACTURING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(12): 3252-3262. DOI: 10.6052/0459-1879-21-364 |
[7] | Chen Hui, Yan Wentao. DYNAMIC BEHAVIOURS OF POWDER PARTICLES IN SELECTIVE LASER MELTING ADDITIVE MANUFACTURING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(12): 3206-3216. DOI: 10.6052/0459-1879-21-403 |
[8] | Zhu Jihong, Cao Yinfeng, Zhai Xingyue, Moumni Ziad, Zhang Weihong. MICROMECHANICAL STUDY OF THE HIGH CYCLE FATIGUE PROPERTY OF ADDITIVE-MANUFACTURED 316 STEEL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(12): 3181-3189. DOI: 10.6052/0459-1879-21-396 |
[9] | Zhang Jiangtao, Tan Yuanqiang, Ji Caiyuan, Xiao Xiangwu, Jiang Shengqiang. RESEARCH ON THE EFFECTS OF ROLLER-SPREADING PARAMETERS FOR NYLON POWDER SPREADABILITY IN ADDITIVE MANUFACTURING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(9): 2416-2426. DOI: 10.6052/0459-1879-21-240 |
[10] | Wang Chao, Xu Bin, Duan Zunyi, Rong Jianhua. ADDITIVE MANUFACTURING-ORIENTED STRESS MINIMIZATION TOPOLOGY OPTIMIZATION WITH CONNECTIVITY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(4): 1070-1080. DOI: 10.6052/0459-1879-20-389 |