Citation: | Xu Jun, Li Peng, Shang Yan, Qian Zhenghua, Ma Tingfeng. The theoretical analysis and experimental investigation of sub-wavelength focusing via concave lens. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(8): 1742-1752. DOI: 10.6052/0459-1879-23-148 |
[1] |
姜恒, 黄国良. 弹性波与力学超材料设计与应用专题序. 力学学报, 2022, 54(10): 2676-2677 (Jiang Heng, Huang Guoliang. Preface of theme articles on design and application of elastic wave and mechanical metamaterials. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(10): 2676-2677 (in Chinese) doi: 10.6052/0459-1879-22-481
Jiang Heng, Huang Guoliang. Preface of theme articles on design and application of elastic wave and mechanical metamaterials. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(10): 2676-2677 (in Chinese) doi: 10.6052/0459-1879-22-481
|
[2] |
夏建平, 葛勇, 孙宏祥等. 基于近零折射率材料的声非对称聚焦透镜. 声学学报, 2019, 44(4): 765-771 (Xia Jianping, Ge Yong, Sun Hongxiang, et al. Acoustic asymmetric focusing lens by near-zero refractive index material. Acta Acustica, 2019, 44(4): 765-771 (in Chinese) doi: 10.15949/j.cnki.0371-0025.2019.04.038
Xia Jianping, Ge Yong, Sun Hongxiang, et al. Acoustic asymmetric focusing lens by near-zero refractive index material. Acta Acustica, 2019, 44(4): 765-771 (in Chinese) doi: 10.15949/j.cnki.0371-0025.2019.04.038
|
[3] |
王丹凤, 任致远, 庄国志. 梯度折射率超材料透镜. 科学通报, 2022, 67(12): 1279-1289 (Wang Danfeng, Ren Zhiyuan, Zhuang Guozhi. A review of gradient index metamaterials lenses. Chinese Science Bulletin, 2022, 67(12): 1279-1289 (in Chinese) doi: 10.1360/TB-2021-0523
Wang Danfeng, Ren Zhiyuan, Zhuang Guozhi. A review of gradient index metamaterials lenses. Chinese Science Bulletin, 2022, 67(12): 1279-1289 (in Chinese) doi: 10.1360/TB-2021-0523
|
[4] |
Hu CJ, Xue SW, Yin YH, et al. Acoustic super-resolution imaging based on solid immersion 3D Maxwell's fish-eye lens. Applied Physics Letters, 2022, 120: 192202 doi: 10.1063/5.0093339
|
[5] |
Zhao LX, Lai CQ, Yu M. Modified structural Luneburg lens for broadband focusing and collimation. Mechanical Systems and Signal Processing, 2020, 144: 106868 doi: 10.1016/j.ymssp.2020.106868
|
[6] |
Zhao LX, Horiuchi T, Yu M. Broadband acoustic collimation and focusing using reduced aberration acoustic Luneburg lens. Journal of Applied Physics, 2021, 130: 214901 doi: 10.1063/5.0064571
|
[7] |
Ma TX, Li ZY, Zhang CZ, et al. Energy harvesting of Rayleigh surface waves by a phononic crystal Luneburg lens. International Journal of Mechanical Sciences, 2022, 227: 107435 doi: 10.1016/j.ijmecsci.2022.107435
|
[8] |
Zhu HF, Semperlotti F. Anomalous refraction of acoustic guided waves in solids with geometrically tapered metasurfaces. Physcial Review Letters, 2016, 117: 034302 doi: 10.1103/PhysRevLett.117.034302
|
[9] |
Climente A, Torrent D, Sánchez-Dehesa J. Gradient index lenses for flexural waves based on thickness variations. Applied Physics Letters, 2014, 105: 064101 doi: 10.1063/1.4893153
|
[10] |
史惠琦, 王惠明. 一种新型介电弹性体仿生可调焦透镜的变焦分析. 力学学报, 2020, 52(6): 1719-1729 (Shi Huiqi, Wang Huiming. Theoretical nonlinear analysis of a biomimetic tunable lens driven by dielectric elastomer. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1719-1729 (in Chinese) doi: 10.6052/0459-1879-20-212
Shi Huiqi, Wang Huiming. Theoretical nonlinear analysis of a biomimetic tunable lens driven by dielectric elastomer. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1719-1729 (in Chinese) doi: 10.6052/0459-1879-20-212
|
[11] |
Wang ZY, Zhang P, Nie XF, et al. Focusing of liquid surface waves by gradient index lens. Europhysics Letters, 2014, 108: 24003 doi: 10.1209/0295-5075/108/24003
|
[12] |
Darabi A, Leamy MJ. Analysis and experimental validation of an optimized gradient-index phononic-crystal lens. Physical Review Applied, 2018, 10: 024045 doi: 10.1103/PhysRevApplied.10.024045
|
[13] |
Jin YB, Djafari-Rouhani B, Torrent D. Gradient index phononic crystals and metamaterials. Nanophonics, 2019, 8: 685-701
|
[14] |
Yu NF, Genevet P, Kats MA, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science, 2011, 334: 333-337 doi: 10.1126/science.1210713
|
[15] |
Li Y, Liang B, Gu ZM, et al. Reflected wavefront manipulation based on ultrathin planar acoustic metasurfaces. Scientific Reports, 2013, 3: 2546 doi: 10.1038/srep02546
|
[16] |
Zhang H, Xiao Y, Wen JH, et al. Ultra-thin smart acoustic metasurface for low-frequency sound insulation. Applied Physics Letters, 2016, 108: 141902 doi: 10.1063/1.4945664
|
[17] |
Wang YF, Wang Y, Wu B, et al. Tunable and active phononic crystals and metamaterials. Applied Mechanics Reviews, 2020, 72: 040801 doi: 10.1115/1.4046222
|
[18] |
Mei J, Wu Y. Controllable transmission and total reflection through an impedance-matched acoustic metasurface. New Journal of Physics, 2014, 16: 123007 doi: 10.1088/1367-2630/16/12/123007
|
[19] |
Zhang J, Su XS, Liu YL, et al. Metasurface constituted by thin composite beams to steer flexural waves in thin plates. International Journal of Solids and Structures, 2019, 162: 14-20 doi: 10.1016/j.ijsolstr.2018.11.025
|
[20] |
Cao LY, Yang ZC, Xu YL, et al. Pillared elastic metasurface with constructive interference for flexural wave manipulation. Mechanical Systems and Signal Processing, 2021, 146: 107035 doi: 10.1016/j.ymssp.2020.107035
|
[21] |
Shen C, Xie YB, Sui N, et al. Broadband acoustic hyperbolic metamaterial. Physical Review Letters, 2015, 115: 254301 doi: 10.1103/PhysRevLett.115.254301
|
[22] |
Jia H, Ke MZ, Hao R, et al. Subwavelength imaging by a simple planar acoustic superlens. Applied Physics Letters, 2010, 97: 173507 doi: 10.1063/1.3507893
|
[23] |
Liu AP, Zhou XM, Huang GL, et al. Super-resolution imaging by resonant tunneling in anisotropic acoustic metamaterials. The Journal of the Acoustical Society of America, 2012, 132: 2800-2806 doi: 10.1121/1.4744932
|
[24] |
Qi SB, Li Y, Assouar B. Acoustic focusing and energy confinement based on multilateral metasurfaces. Physical Review Applied, 2017, 7: 054006 doi: 10.1103/PhysRevApplied.7.054006
|
[25] |
宋世超, 王彬, 李鹏等. A0模态Lamb波聚焦透镜的结构设计及实验研究. 声学学报, 2023, 48(1): 154-161 (Song Shichao, Wang Bin, Li Peng, et al. The structural design and experimental investigation of focusing lens of A0 mode Lamb waves. Acta Acustica, 2023, 48(1): 154-161 (in Chinese)
Song Shichao, Wang Bin, Li Peng, et al. The structural design and experimental investigation of focusing lens of A0 mode Lamb waves. Acta Acustica, 2023, 48(1): 154-161 (in Chinese)
|
[26] |
Liu L, Hussein MI. Wave motion in periodic flexural beams and characterization of the transition between Bragg scattering and local resonance. Journal of Applied Mechanics, 2012, 79: 011003 doi: 10.1115/1.4004592
|
[27] |
Geng Q, Wang T, Wu L, et al. Defect coupling behavior and flexural wave energy harvesting of phononic crystal beams with double defects in thermal environments. Journal of Physics D: Applied Physics, 2021, 54(22): 225501 doi: 10.1088/1361-6463/abe1e7
|
[28] |
Li P, Qian Z, Dong B, et al. A novel method for sub-wavelength focusing of flexural waves. International Journal of Mechanical Sciences, 2023, 248: 108206 doi: 10.1016/j.ijmecsci.2023.108206
|
[29] |
Xu YL, Cao LY, Yang ZC. Deflecting incident flexural waves by nonresonant single-phase meta-slab with subunits of graded thicknesses. Journal of Sound and Vibration, 2019, 454: 51-62 doi: 10.1016/j.jsv.2019.04.028
|
[30] |
Belanger P, Boivin G. Development of a low frequency omnidirectional piezoelectric shear horizontal wave transducer. Smart Materials and Structures, 2016, 25: 045024 doi: 10.1088/0964-1726/25/4/045024
|
[31] |
Huan Q, Miao HC, Li FX. Generation and reception of shear horizontal waves using the synthetic face-shear mode of a thickness-poled piezoelectric wafer. Ultrasonics, 2018, 86: 20-27 doi: 10.1016/j.ultras.2018.01.009
|
[32] |
Raghavan A, Cesnik CES. Finite-dimensional piezoelectric transducer modeling for guided wave based structural health monitoring. Smart Materials and Structures, 2005, 14(6): 1448-1461 doi: 10.1088/0964-1726/14/6/037
|
[33] |
Koduru JP, Rose JL. Transducer arrays for omnidirectional guided wave mode control in plate like structures. Smart Materials and Structures, 2012, 22(1): 15010
|
[34] |
Li P, Qian Z, Zhang YH, et al. The energy focusing of reflected flexural waves via two adjacent phase-modulation-based lenses. Energy, 2023, 267: 126523 doi: 10.1016/j.energy.2022.126523
|
[1] | Zhang Shuai, Wang Bo, Ma Zeyao, Chen Xiaodong. INFLUENCES OF KEY CONFIGURATION PARAMETERS ON FLOW-FOCUSING MICROFLUIDIC DROPLET GENERATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(6): 1257-1266. DOI: 10.6052/0459-1879-23-094 |
[2] | Wang Fanglong, Shen Yizhou, Xu Yanlong, Zhou Shengxi, Yang Zhichun. RAINBOW TRAPPING OF FLEXURAL WAVES AND ITS APPLICATION IN ENERGY HARVESTING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(10): 2695-2707. DOI: 10.6052/0459-1879-22-107 |
[3] | Zhao Xining, Yang Xiaodong, Zhang Wei. NONLIEAR BENDING WAVES OF A PIEZOELECTRIC LAMINATED BEAM WITH ELECTRICAL BOUNDARY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(4): 1124-1137. DOI: 10.6052/0459-1879-20-409 |
[4] | Li Guangbin, Si Ting, Yin Xiezhen. TEMPORAL INSTABILITY STUDY OF INVISCID FOCUSED JETS UNDER AN ELECTRIC FIELD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(5): 876-883. DOI: 10.6052/0459-1879-12-032 |
[5] | Si Ting Ruijun Tian Guangbin Li Xiezhen Yin. Experimental study of the flow focusing under an electric field[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(6): 1030-1036. DOI: 10.6052/0459-1879-2011-6-lxxb2011-156 |
[6] | Xizeng Zhao, Zhaochen Sun, Shuxiu Liang. Focusing models for generating freak waves[J]. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(4): 447-454. DOI: 10.6052/0459-1879-2008-4-2007-270 |
[7] | Honghui Teng, Chun Wang, Bo Deng, Zonglin Jiang. Ignition characteristics of the shock wave focusing in combustive gases[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(2): 171-180. DOI: 10.6052/0459-1879-2007-2-2005-578 |
[8] | Zongmin Hu, Zonglin Jiang. Wave dynamic processes in cellular detonation reflection from wedges[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(1): 33-41. DOI: 10.6052/0459-1879-2007-1-2005-431 |
[9] | Zhenhua Huang, M.S. Ghidaoui. A model for the scattering of long waves by slotted breakwaters in the presence of currents[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(1): 1-9. DOI: 10.6052/0459-1879-2007-1-2006-240 |
[10] | NUMERICAL INVESTIGATION OF DIFFRACTION, FOCUSING AND REFLECTION OF TOROIDAL SHOCK WAVES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2004, 36(1). DOI: 10.6052/0459-1879-2004-1-2003-341 |