Citation: | Huang An, Cao Guoxin. Effectiveness of the homogeneous skull model under blast waves. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(8): 1774-1787. DOI: 10.6052/0459-1879-23-139 |
[1] |
Courtney A, Courtney M. The complexity of biomechanics causing primary blast-induced traumatic brain injury: A review of potential mechanisms. Frontiers in Neurology, 2015, 6: 221
|
[2] |
Nakagawa A, Manley GT, Gean AD, et al. Mechanisms of primary blast-induced traumatic brain injury: insights from shock-wave research. Journal of Neurotrauma, 2011, 28(6): 1101-1119 doi: 10.1089/neu.2010.1442
|
[3] |
Li ZJ, Du ZB, You XC, et al. Numerical study on dynamic mechanism of brain volume and shear deformation under blast loading. Acta Mechanica Sinica, 2019, 35(5): 1104-1119 doi: 10.1007/s10409-019-00875-w
|
[4] |
栗志杰, 由小川, 柳占立等. 爆炸冲击波作用下颅脑损伤机理的数值模拟研究. 爆炸与冲击, 2020, 40(1): 1-12 (Li Zhijie, You Xiaochuan, Liu Zhanli, et al. Numerical simulation of the mechanism of traumatic brain injury induced by blast shock waves. Explosion and Shock Waves, 2020, 40(1): 1-12 (in Chinese) doi: 10.11883/bzycj-2019-0347
Li Zhijie, You Xiaochuan, Liu Zhanli, et al. Numerical simulation of the mechanism of traumatic brain injury induced by blast shock waves. Explosion And Shock Waves, 2020, 40(1): 1-12(in Chinese)) doi: 10.11883/bzycj-2019-0347
|
[5] |
Huang XY, Hu XP, Zhang L, et al. Craniocerebral dynamic response and cumulative effect of damage under repetitive blast. Annals of Biomedical Engineering, 2021, 49(10): 2932-2943 doi: 10.1007/s10439-021-02746-7
|
[6] |
Chafi MS, Karami G, Ziejewski M. Biomechanical assessment of brain dynamic responses due to blast pressure waves. Annals of Biomedical Engineering, 2010, 38(2): 490-504 doi: 10.1007/s10439-009-9813-z
|
[7] |
Grujicic M, Arakere G, He T. Material-modeling and structural-mechanics aspects of the traumatic brain injury problem. Multidiscipline Modeling in Materials and Structures, 2010, 6(3): 335-363 doi: 10.1108/15736101011080097
|
[8] |
Grujicic M, Bell WC, Pandurangan B, et al. Fluid/structure interaction computational investigation of blast-wave mitigation efficacy of the advanced combat helmet. Journal of Materials Engineering and Performance, 2011, 20(6): 877-893 doi: 10.1007/s11665-010-9724-z
|
[9] |
Ganpule S, Gu L, Alai A, et al. Role of helmet in the mechanics of shock wave propagation under blast loading conditions. Computer Methods in Biomechanics and Biomedical Engineering, 2012, 15(11): 1233-1244 doi: 10.1080/10255842.2011.597353
|
[10] |
Ganpule S, Alai A, Plougonven E, et al. Mechanics of blast loading on the head models in the study of traumatic brain injury using experimental and computational approaches. Biomechanics and Modeling in Mechanobiology, 2013, 12(3): 511-531 doi: 10.1007/s10237-012-0421-8
|
[11] |
张文超, 王舒, 梁增友等. 爆炸冲击波致颅脑冲击伤数值模拟研究. 北京理工大学学报, 2022, 42(9): 881-890 (Zhang Wenchao, Wang Shu, Liang Zengyou, et al. Numerical simulation on traumatic brain injury induced by blast waves. Transactions of Beijing Institute of Technology, 2022, 42(9): 881-890 (in Chinese)
Zhang Wenchao, Wang Shu, Liang Zengyou, et al. Numerical simulation on traumatic brain injury induced by blast waves. Transactions of Beijing Institute of Technology, 2022, 42(9): 881-890(in Chinese))
|
[12] |
Wu QQ, Yang CL, Ohrndorf A, et al. Impact behaviors of human skull sandwich cellular bones: Theoretical models and simulation. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 104: 103669 doi: 10.1016/j.jmbbm.2020.103669
|
[13] |
Wu QQ, Chen ZB, Xiong J, et al. Computational studies of porous head protection structures for human cranium under impact loading. Acta Mechanica Solida Sinica, 2021, 34(4): 477-493 doi: 10.1007/s10338-021-00222-2
|
[14] |
Wu QQ, Ghosh R, Wei XY, et al. Theoretical prediction model and failure mechanism map of human skull porous structures with quasi-static bending performance. International Journal of Mechanical Sciences, 2021, 200: 106431 doi: 10.1016/j.ijmecsci.2021.106431
|
[15] |
Wu QQ, Xiong J. Influence of modeling approaches and structural parameters on impact resistance of the human porous cranium. Acta Mechanica Sinica, 2021, 37(6): 910-928 doi: 10.1007/s10409-021-01077-z
|
[16] |
Ruan JS, Khalil T, King AI. Dynamic response of the human head to impact by three-dimensional finite element analysis. Journal of Biomechanical Engineering, 1994, 116(1): 44-50 doi: 10.1115/1.2895703
|
[17] |
Kleiven S, Hardy WN. Correlation of an FE model of the human head with local brain motion-consequences for injury prediction. Stapp Car Crash Journal, 2002, 46: 123-144
|
[18] |
Kleiven S, Holst HV. Consequences of head size following trauma to the human head. Journal of Biomechanics, 2002, 35(2): 153-160 doi: 10.1016/S0021-9290(01)00202-0
|
[19] |
Horgan TJ, Gilchrist MD. The creation of three-dimensional finite element models for simulating head impact biomechanics. International Journal of Crashworthiness, 2003, 8(4): 353-366 doi: 10.1533/ijcr.2003.0243
|
[20] |
Giordano C, Kleiven S. Evaluation of axonal strain as a predictor for mild traumatic brain injuries using finite element modeling. Stapp Car Crash Journal, 2014, 58(14): 29-61
|
[21] |
Cai ZH, Xia Y, Bao Z, et al. Creating a human head finite element model using a multi-block approach for predicting skull response and brain pressure. Computer Methods in Biomechanics and Biomedical Engineering, 2019, 22(2): 169-179 doi: 10.1080/10255842.2018.1541983
|
[22] |
Melvin JW, Robbins DH, Roberts VL. The mechanical behavior of the diploe layer of the human skull in compression. Mechanical Sciences, 1969, 5: 811-818
|
[23] |
Zhang LY, Yang KH, King AI. Comparison of brain responses between frontal and lateral impacts by finite element modeling. Journal of Neurotrauma, 2001, 18(1): 21-30 doi: 10.1089/089771501750055749
|
[24] |
Sayed TE, Mota A, Fraternali F, et al. Biomechanics of traumatic brain injury. Computer Methods in Applied Mechanics and Engineering, 2008, 197(51-52): 4692-4701 doi: 10.1016/j.cma.2008.06.006
|
[25] |
Zoghi-Moghadam M, Sadegh AM. Global/local head models to analyse cerebral blood vessel rupture leading to ASDH and SAH. Computer Methods in Biomechanics and Biomedical Engineering, 2009, 12(1): 1-12 doi: 10.1080/10255840802020420
|
[26] |
Mcelhaney JH, Fogle JL, Melvin JW, et al. Mechanical properties on cranial bone. Journal of Biomechanics, 1970, 3(5): 495-511 doi: 10.1016/0021-9290(70)90059-X
|
[27] |
Alexander SL, Gunnarsson CA, Rafaels K, et al. Multiscale response of the human skull to quasi-static compression. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 102: 103492 doi: 10.1016/j.jmbbm.2019.103492
|
[28] |
Zhai XD, Nauman EA, Moryl D, et al. The effects of loading-direction and strain-rate on the mechanical behaviors of human frontal skull bone. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 103: 103597 doi: 10.1016/j.jmbbm.2019.103597
|
[29] |
Delille R, Lesueur D, Potier P, et al. Experimental study of the bone behaviour of the human skull bone for the development of a physical head model. International Journal of Crashworthiness, 2007, 12(2): 101-108 doi: 10.1080/13588260701433081
|
[30] |
Motherway JA, Verschueren P, Perre GVD, et al. The mechanical properties of cranial bone: The effect of loading rate and cranial sampling position. Journal of Biomechanics, 2009, 42(13): 2129-2135 doi: 10.1016/j.jbiomech.2009.05.030
|
[31] |
Auperrin A, Delille R, Lesueur D, et al. Geometrical and material parameters to assess the macroscopic mechanical behaviour of fresh cranial bone samples. Journal of Biomechanics, 2014, 47(5): 1180-1185 doi: 10.1016/j.jbiomech.2013.10.060
|
[32] |
Rahmoun J, Auperrin A, Delille R, et al. Characterization and micromechanical modeling of the human cranial bone elastic properties. Mechanics Research Communications, 2014, 60: 7-14 doi: 10.1016/j.mechrescom.2014.04.001
|
[33] |
Torimitsu S, Nishida Y, Takano T, et al. Statistical analysis of the thickness and biomechanical properties of Japanese children's skulls. Forensic Science International, 2023, 344: 111580 doi: 10.1016/j.forsciint.2023.111580
|
[34] |
Igo BJ, Cottler PS, Black JS, et al. The mechanical and microstructural properties of the pediatric skull. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 120(8): 104578
|
[35] |
Hubbard RP. Flexure of layered cranial bone. Journal of Biomechanics, 1971, 4(4): 251-263 doi: 10.1016/0021-9290(71)90031-5
|
[36] |
Yang FY, Li ZJ, Liu ZL, et al. Shock loading mitigation performance and mechanism of the PE/wood/PU/foam structures. International Journal of Impact Engineering, 2021, 155: 103904 doi: 10.1016/j.ijimpeng.2021.103904
|
[37] |
邹有纯, 熊超, 殷军辉等. 层状复合结构的应力波传播规律及能量耗散机制研究. 振动与冲击, 2022, 41(15): 209-216 (Zou Youchun, Xiong Chao, Yin Junhui, et al. Stress wave propagation law and energy dissipation mechanism of layered composite structure. Journal of Vibration and Shock, 2022, 41(15): 209-216 (in Chinese)
Zou Youchun, Xiong Chao, Yin Junhui, et al. Stress wave propagation law and energy dissipation mechanism of layered composite structure. Journal of Vibration And Shock, 2022, 41(15): 209-216(in Chinese))
|
[38] |
Zhu F, Wagner C, Leonardi ADC, et al. Using a gel/plastic surrogate to study the biomechanical response of the head under air shock loading: a combined experimental and numerical investigation. Biomechanics and Modeling in Mechanobiology, 2012, 11(3-4): 341-353 doi: 10.1007/s10237-011-0314-2
|
[39] |
Panzer MB, Myers BS, Capehart BP, et al. Development of a finite element model for blast brain injury and the effects of CSF cavitation. Annals of Biomedical Engineering, 2012, 40(7): 1530-1544 doi: 10.1007/s10439-012-0519-2
|
[40] |
栗志杰, 由小川, 柳占立等. 基于三维头部数值模型的颅脑碰撞损伤机理研究. 工程力学, 2019, 36(5): 246-256 (Li Zhijie, You Xiaochuan, Liu Zhanli, et al. Study on the mechanism of brain injury during head impact based on the three-dimension numerical head model. Engineering Mechanics, 2019, 36(5): 246-256 (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.04.0254
Li Zhijie, You Xiaochuan, Liu Zhanli, et al. Study on the mechanism of brain injury during head impact based on the three-dimension numerical head model. Engineering Mechanics, 2019, 36(5): 246-256(in Chinese)) doi: 10.6052/j.issn.1000-4750.2018.04.0254
|
[41] |
Shen JH, Lu GX, Wang ZH, et al. Experiments on curved sandwich panels under blast loading. International Journal of Impact Engineering, 2010, 37(9): 960-970 doi: 10.1016/j.ijimpeng.2010.03.002
|
[42] |
Kumar P, Stargel DS, Shukla A. Effect of plate curvature on blast response of carbon composite panels. Composite Structures, 2013, 99: 19-30 doi: 10.1016/j.compstruct.2012.11.036
|
[43] |
Chen Y, Ostoja-Starzewski M. MRI-based finite element modeling of head trauma: spherically focusing shear waves. Acta Mechanica, 2010, 213(1-2): 155-167 doi: 10.1007/s00707-009-0274-0
|
[44] |
Goeller J, Wardlaw A, Treichler D, et al. Investigation of cavitation as a possible damage mechanism in blast-induced traumatic brain injury. Journal of Neurotrauma, 2012, 29(10): 1970-1981 doi: 10.1089/neu.2011.2224
|
[45] |
Eslaminejad A, Hosseini-Farid M, Ziejewski M, et al. Brain tissue constitutive material models and the finite element analysis of blast-induced traumatic brain injury. Scientia Iranica, 2018, 25(6): 3141-3150
|
[1] | Jiang Shouyan, Gao Jia, Lin Anbang, Du Chengbin. DYNAMIC CRACKING SIMULATION OF SHEAR-BASED FRACTURE BY USING SBFEM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(9): 2625-2634. DOI: 10.6052/0459-1879-24-185 |
[2] | Wang Biao, Wang Shuyu, Xiong Yukai, Zhao Jianfeng, Kang Guozheng, Zhang Xu. CRYSTAL PLASTIC FINITE ELEMENT SIMULATION OF TENSILE FRACTURE BEHAVIOR OF GRADIENT-GRAINED MATERIALS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(8): 2271-2281. DOI: 10.6052/0459-1879-24-149 |
[3] | Huang Congyi, Zhao Weiwen, Wan Decheng. SIMULATION OF THE MOTION OF AN ELASTIC HULL IN REGULAR WAVES BASED ON MPS-FEM METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(12): 3319-3332. DOI: 10.6052/0459-1879-22-468 |
[4] | Du Chengbin, Huang Wencang, Jiang Shouyan. CRACKING SIMULATION OF QUASI-BRITTLE MATERIALS BY COMBINING SBFEM WITH NONLOCAL MACRO-MICRO DAMAGE MODEL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(4): 1026-1039. DOI: 10.6052/0459-1879-21-608 |
[5] | Yang Dongbao, Gao Junsong, Liu Jianping, Song Chu, Ji Shunying. ANALYSIS OF ICE-INDUCTED STRUCTURE VIBRATION OF OFFSHORE WIND TURBINES BASED ON DEM-FEM COUPLED METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(3): 682-692. DOI: 10.6052/0459-1879-20-386 |
[6] | Xiong Jun, Li Zhenhuan, Zhu Yaxin, Huang Minsheng. MICROSTRUCTURE EVOLUTION MECHANISM BASED CRYSTAL-PLASTICITY CONSTITUTIVE MODEL FOR NICKEL-BASED SUPERALLOY AND ITS FINITE ELEMENT SIMULATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(4): 763-781. DOI: 10.6052/0459-1879-17-183 |
[7] | Jin Feng. Penetration and perforation performance of three pyramidal lattice-cored sandwich plates: numerical simulations[J]. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(6): 1125-1137. DOI: 10.6052/0459-1879-2010-6-lxxb2009-400 |
[8] | Yan Zhao, Zhonghua Shen, Jian Lu, Xiaowu Ni. Finite element simulation of leaky lamb wave at fluid-solid interfaces excited thermoelastically by pulsed laser[J]. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(1): 35-39. DOI: 10.6052/0459-1879-2008-1-2006-065 |
[9] | Jiachun Li. NUMERICAL SIMULATION OF MARANGONI CONVECTION IN THE FLOATING ZONE UNDER MICROGRAVITY BY FEM[J]. Chinese Journal of Theoretical and Applied Mechanics, 1991, 23(2): 149-156. DOI: 10.6052/0459-1879-1991-2-1995-821 |
[10] | Yurun Fan, . 挤出胀大流动的有限元方法研究[J]. Chinese Journal of Theoretical and Applied Mechanics, 1990, 22(3): 285-292. DOI: 10.6052/0459-1879-1990-3-1995-946 |