Citation: | Zhan Wentao, Zhao Hui, Rao Xiang, Liu Wei, Xu Yunfeng. Numerical simulation of multi-scale fractured reservoir based on connection element method. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(7): 1570-1581. DOI: 10.6052/0459-1879-23-069 |
[1] |
邹才能, 朱如凯, 吴松涛等. 常规与非常规油气聚集类型、特征、机理及展望——以中国致密油和致密气为例. 石油学报, 2012, 33(2): 173-187 (Zou Caineng, Zhu Rukai, Wu Songtao, et al. Types, characteristics, genesis and prospects of conventional and unconventional hydrocarbon accumulation: staking tight oil and tight gas in China as an instance. Acta Petrolei Sinica, 2012, 33(2): 173-187 (in Chinese) doi: 10.1038/aps.2011.203
Zou Caineng, Zhu Rukai, Wu Songtao, et al. Types, characteristics, genesis and prospects of conventional and unconventional hydrocarbon accumulation: staking tight oil and tight gas in China as an instance[J]. Acta Petrolei Sinica, 2012, 33(02): 173-187 (in Chinese)) doi: 10.1038/aps.2011.203
|
[2] |
吴奇, 胥云, 张守良等. 非常规油气藏体积改造技术核心理论与优化设计关键. 石油学报, 2014, 35(4): 706-714 (Wu Qi, Xu Yun, Zhang Shouliang, et al. The core theories and key optimization designs of volume stimulation technology for unconventional reservoirs. Acta Petrolei Sinica, 2014, 35(4): 706-714 (in Chinese)
Wu Qi, Xu Yun, Zhang Shouliang, et al. The core theories and key optimization designs of volume stimulation technology for unconventional reservoirs[J]. Acta Petrolei Sinica, 2014, 35(04): 706-714 (in Chinese)
|
[3] |
李然, 易新斌, 王天一等. 基于细观离散元方法的低渗透储层水力压裂数值模拟. 石油科学通报, 2022, 7(4): 576-583 (Li Ran, Yi Xinbin, Wang Tianyi, et al. Numerical simulation of hydraulic fracturing for low permeability reservoirs based on particle flow code-discrete element method. Petroleum Science Bulletin, 2022, 7(4): 576-583 (in Chinese) doi: 10.3969/j.issn.2096-1693.2022.04.049
(Li Ran, Yi Xinbin, Wang Tianyi, et al. Numerical simulation of hydraulic fracturing for low permeability reservoirs based on particle flow code-discrete element method[J]. Petroleum Science Bulletin, 2022, 7(04): 576-583. (in Chinese) doi: 10.3969/j.issn.2096-1693.2022.04.049
|
[4] |
薛亮, 吴雨娟, 刘倩君等. 裂缝性油气藏数值模拟与自动历史拟合研究进展. 石油科学通报, 2019, 4(4): 335-346 (Xue Liang, Wu Yujuan, Liu Qianjun, et al. Advances in numerical simulation and automatic history matching of fractured reservoirs. Petroleum Science Bulletin, 2019, 4(4): 335-346 (in Chinese)
Xue Liang, Wu Yujuan, Liu Qianjun, et al. Advances in numerical simulation and automatic history matching of fractured reservoirs[J]. Petroleum Science Bulletin, 2019, 4(04): 335-346. (in Chinese)
|
[5] |
Snow DT. Rock fracture spacings, openings and porosities. Journal of the Soil Mechanics & Foundations Division, 1968, 94(1): 73-92
|
[6] |
Warren JE, Root PJ. The behavior of naturally fractured reservoirs. Society of Petroleum Engineers Journal, 1963, 3(3): 245-255 doi: 10.2118/426-PA
|
[7] |
Pruess K, Narasimhan TN. Practical method for modeling fluid and heat flow in fractured porous media. Society of Petroleum Engineers Journal, 1985, 25(1): 14-26 doi: 10.2118/10509-PA
|
[8] |
Gilman JR. An efficient finite-difference method for simulating phase segregation in the matrix blocks in double-porosity reservoirs. SPE Reservoir Engineering, 1986, 1(4): 403-413 doi: 10.2118/12271-PA
|
[9] |
张烈辉, 贾鸣, 张芮菡等. 裂缝性油藏离散裂缝网络模型与数值模拟. 西南石油大学学报(自然科学版), 2017, 39(3): 121-127 (Zhang Liehui, Jia Ming, Zhang Ruihan, et al. Discrete fracture network modeling and numerical simulation of fractured reservoirs. Journal of Southwest Petroleum University (Science & Technology Edition), 2017, 39(3): 121-127 (in Chinese)
Zhang Liehui, Jia Ming, Zhang Ruihan, et al. Discrete Fracture Network Modeling and Numerical Simulation of Fractured Reservoirs[J]. Journal of Southwest Petroleum University (Science & Technology Edition) 2017, 39(3): 121-127 (in Chinese)
|
[10] |
Slough KJ, Sudicky EA, Forsyth PA. Grid refinement for modeling multiphase flow in discretely fractured porous media. Advances in Water Resources, 1999, 23(3): 261-269 doi: 10.1016/S0309-1708(99)00009-3
|
[11] |
邓英尔, 刘慈群, 王允诚. 考虑吸渗的双重介质中垂直裂缝井两相渗流. 重庆大学学报(自然科学版), 2000, 23: 86-89 (Deng Yinger, Liu Ciqun, Wang Yuncheng. Two phase flow through double-porosity media with vertically fractured well working. Journal of Chongqing University (Natural Science Edition), 2000, 23: 86-89 (in Chinese)
Deng Yinger, Liu Ciqun, Wang Yuncheng. Two phase flow through double-porosity media with vertically fractured well working[J]. Journal of Chongqing University (Natural Science Edition), 2000: 86-89 (in Chinese)
|
[12] |
Karimi-fard M, Firoozabadi A. Numerical simulation of water injection in fractured media using the discrete-fracture model and the Galerkin method. SPE Reservoir Evaluation & Engineering, 2003, 6(2): 117-126
|
[13] |
姚军, 王子胜, 张允等. 天然裂缝性油藏的离散裂缝网络数值模拟方法. 石油学报, 2010, 31(2): 284-288 (Yao Jun, Wang Zisheng, Zhang Yun, et al. Numerical simulation method of discrete fracture network for naturally fractured reservoirs. Acta Petrolei Sinica, 2010, 31(2): 284-288 (in Chinese)
Yao Jun, Wang Zisheng, Zhang Yun, et al. Numerical simulation method of discrete fracture network for naturally fractured reservoirs[J]. Acta Petrolei Sinica, 2010, 31(02): 284-288 (in Chinese))
|
[14] |
邓英豪, 夏阳, 金衍. 基于扩展有限元的离散缝网渗流数值模拟方法. 石油学报, 2022, 43(10): 1474-1486 (Deng Yinghao, Xia Yang, Jin Yan. Numerical simulation method of discrete fracture network flow based on the extended finite element method. Acta Petrolei Sinica, 2022, 43(10): 1474-1486 (in Chinese)
Deng Yinghao, Xia Yang, Jin Yan. Numerical simulation method of discrete fracture network flow based on the extended finite element method[J]. Acta Petrolei Sinica, 2022, 43(10): 1474-1486 (in Chinese)
|
[15] |
Monteagudo JE, Forsyth PA. Control-volume method for numerical simulation of two-phase immiscible flow in two-and three-dimensional discrete-fractured media. Water Resources Research, 2004, 40(7): W07405
|
[16] |
袁迎中, 向祖平, 戚志林等. 基于PEBI网格的离散裂缝油藏数值模拟研究. 水动力学研究与进展, 2016, 31(3): 379-386 (Yuan Yingzhong, Xiang Zuping, Qi Zhilin, et al. Numerical simulation research of discrete fracture reservoir based on PEBI grid. Journal of Hydrodynamics, 2016, 31(3): 379-386 (in Chinese)
Yuan Yingzhong, Xiang Zuping, Qi Zhilin, et al. Numerical simulation research of discrete fracture reservoir based on PEBI grid[J]. Journal Of Hydrodynamics, 2016, 31(03): 379-386 (in Chinese)
|
[17] |
唐潮, 陈小凡, 杜志敏等. 基于有限体积法的裂缝性油藏两相流动模型. 石油学报, 2018, 39(8): 924-936 (Tang Chao, Chen Xiaofan, Du Zhimin, et al. Fractured reservoir two phase flow model based on finite volume method. Acta Petrolei Sinica, 2018, 39(8): 924-936 (in Chinese) doi: 10.7623/syxb201808008
Tang Chao, Chen Xiaofan, Du Zhimin, et al. Fractured reservoir two phase flow model based on finite volume method[J]. Acta Petrolei Sinica, 2018, 39(08): 924-936 (in Chinese)) doi: 10.7623/syxb201808008
|
[18] |
程林松, 杜旭林, 饶翔等. 两套节点格林元嵌入式离散裂缝模型数值模拟方法. 力学学报, 2022, 54(10): 2892-2903 (Cheng Linsong, Du Xulin, Rao Xiang, et al. A numerical simulation approach for embedded discrete fracture model coupled Green element method based on two sets of nodes. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(10): 2892-2903 (in Chinese)
Cheng Linsong, Du Xulin, Rao Xiang, et al. A numerical simulation approach for embedded discrete fracture model coupled Green element method based on two sets of nodes[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(10): 2892-2903 (in Chinese)
|
[19] |
Fu ZJ, Li AL, Zhang C, et al. A localized meshless collocation method for bandgap calculation of anti-plane waves in 2D solid phononic crystals. Engineering Analysis with Boundary Elements, 2020, 119: 162-182 doi: 10.1016/j.enganabound.2020.07.014
|
[20] |
Rao X, Liu Y, Zhao H. An upwind generalized finite difference method for meshless solution of two-phase porous flow equations. Engineering Analysis with Boundary Elements, 2022, 137: 105-118 doi: 10.1016/j.enganabound.2022.01.013
|
[21] |
Zhan W, Rao X, Zhao H, et al. Generalized finite difference method (GFDM) based analysis for subsurface flow problems in anisotropic formation. Engineering Analysis with Boundary Elements, 2022, 140: 48-58 doi: 10.1016/j.enganabound.2022.04.008
|
[22] |
Gu Y, Sun HG. A meshless method for solving three-dimensional time fractional diffusion equation with variable-order derivatives. Applied Mathematical Modelling, 2020, 78: 539-549 doi: 10.1016/j.apm.2019.09.055
|
[23] |
张雄, 胡炜, 潘小飞等. 加权最小二乘无网格法. 力学学报, 2003, 35(4): 425-431 (Zhang Xiong, Hu Wei, Pan Xiaofei. Meshless weighted least-square method. Chinese Journal of Theoretical and Applied Mechanics, 2003, 35(4): 425-431 (in Chinese)
Zhang Xiong, Hu Wei, Pan Xiaofei, Meshless Weighted Least-square method[J]. Chinese Journal of Theoretical and Applied Mechanics, 2003, 35(4): 425 ~ 431 (in Chinese))
|
[24] |
Benito JJ, Urena F, Gavete L. Influence of several factors in the generalized finite difference method. Applied Mathematical Modelling, 2001, 25(12): 1039-1053 doi: 10.1016/S0307-904X(01)00029-4
|
[25] |
Belytschko T, Lu YY, Gu L. Element-free Galerkin methods. International Journal for Numerical Methods in Engineering, 1994, 37(2): 229-256 doi: 10.1002/nme.1620370205
|
[26] |
Gingold RA, Monaghan JJ. Smoothed particle hydrodynamics: theory and application to non-spherical stars. Monthly Notices of the Royal Astronomical Society, 1977, 181(3): 375-389 doi: 10.1093/mnras/181.3.375
|
[27] |
Zhuang X, Augarde CE, Mathisen KM. Fracture modeling using meshless methods and level sets in 3D: framework and modeling. International Journal for Numerical Methods in Engineering, 2012, 92(11): 969-998 doi: 10.1002/nme.4365
|
[28] |
Rao X, Zhao H, Liu Y. A meshless numerical modeling method for fractured reservoirs based on extended finite volume method. SPE Journal, 2022, 27(6): 3525-3564 doi: 10.2118/210581-PA
|
[29] |
Zhao H, Kang Z, Zhang X, et al. A physics-based data-driven numerical model for reservoir history matching and prediction with a field application. SPE Journal, 2016, 21(6): 2175-2194 doi: 10.2118/173213-PA
|
[30] |
Guo Z, Reynolds AC, Zhao H. Waterflooding optimization with the INSIM-FT data-driven model. Computational Geosciences, 2018, 22: 745-761 doi: 10.1007/s10596-018-9723-y
|
[31] |
Zhao H, Xu L, Guo Z, et al. Flow-path tracking strategy in a data-driven interwell numerical simulation model for waterflooding history matching and performance prediction with infill wells. SPE Journal, 2020, 25(2): 1007-1025 doi: 10.2118/199361-PA
|
[32] |
Li Y, Onur M. INSIM-BHP: A physics-based data-driven reservoir model for history matching and forecasting with bottomhole pressure and production rate data under waterflooding. Journal of Computational Physics, 2023, 473: 111714 doi: 10.1016/j.jcp.2022.111714
|
[33] |
赵辉, 康志江, 张允等. 表征井间地层参数及油水动态的连通性计算方法. 石油学报, 2014, 35(5): 922-927 (Zhao Hui, Kang Zhijiang, Zhang Yun, et al. An interwell conneetivity numerical method for geological parameter characterization and oilwater twophase dynamic prediction. Acta Petrolei Sinica, 2014, 35(5): 922-927 (in Chinese) doi: 10.7623/syxb201405012
Zhao Hui, Kang Zhijiang, Zhang Yun, et al. An interwell conneetivity numerical method for geological parameter characterization and oilwater twophase dynamic prediction[J]. Acta Petrolei Sinica, 2014, 35(05): 922-927 (in Chinese) doi: 10.7623/syxb201405012
|
[34] |
赵辉, 刘伟, 饶翔等. 油藏数值模拟连接元计算方法. 中国科学:技术科学, 2022, 52(12): 1869-1886 (Zhao Hui, Liu Wei, Rao Xiang, et al. Connection element method for reservoir numerical simulation. Scientia Sinica Technologica, 2022, 52(12): 1869-1886 (in Chinese)
Zhao H, Liu W, Rao X, et al. Connection element method for reservoir numerical simulation[J]. Scientia Sinica Technologica, 2022, 52: 1869–1886 (in Chinese)
|
[35] |
Rao X, Zhao H, Liu Y. A novel meshless method based on the virtual construction of node control domains for porous flow problems. Engineering with Computers, 2023, 39(1): 1-41
|
[36] |
Moinfar A, Varavei A, Sepehrnoori K, et al. Development of an efficient embedded discrete fracture model for 3D compositional reservoir simulation in fractured reservoirs. SPE Journal, 2014, 19(2): 289-303 doi: 10.2118/154246-PA
|
[1] | Wei Chang, Fan Yuchen, Zhou Yongqing, Liu Xin, Li Chi, Wang Heyang. SOLVING UNSTEADY PARTIAL DIFFERENTIAL EQUATIONS USING TIME-WEIGHTED PHYSICS-INFORMED NEURAL NETWORK[J]. Chinese Journal of Theoretical and Applied Mechanics, 2025, 57(3): 755-766. DOI: 10.6052/0459-1879-24-289 |
[2] | Chen Haolong, Tang Xinyue, Wang Runhua, Zhou Huanlin, Liu Zhanli. SOLVING MULTI-MEDIA NONLINEAR TRANSIENT HEAT CONDUCTION PROBLEM BASED ON PHYSICS-INFORMED NEURAL NETWORKS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2025, 57(1): 89-102. DOI: 10.6052/0459-1879-24-337 |
[3] | Wei Chang, Fan Yuchen, Zhou Yongqing, Zhang Chaoqun, Liu Xin, Wang Heyang. SELF-REGRESSIVE PHYSICS-INFORMED NEURAL NETWORK BASED ON RUNGE-KUTTA METHOD FOR SOLVING PARTIAL DIFFERENTIAL EQUATIONS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(8): 2482-2493. DOI: 10.6052/0459-1879-24-106 |
[4] | Pan Xiaoguo, Wang Kai, Deng Weixin. ACCELERATING CONVERGENCE ALGORITHM FOR PHYSICS-INFORMED NEURAL NETWORKS BASED ON NTK THEORY AND MODIFIED CAUSALITY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(7): 1943-1958. DOI: 10.6052/0459-1879-24-087 |
[5] | Guo Yuan, Fu Zhuojia, Min Jian, Liu Xiaoting, Zhao Haitao. CURRICULUM-TRANSFER-LEARNING BASED PHYSICS-INFORMED NEURAL NETWORKS FOR LONG-TIME SIMULATION OF NONLINEAR WAVE PROPAGATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(3): 763-773. DOI: 10.6052/0459-1879-23-457 |
[6] | Feng Tangsijie, Liang Wei. THE BUCKLING ANALYSIS OF THIN-WALLED STRUCTURES BASED ON PHYSICS-INFORMED NEURAL NETWORKS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(11): 2539-2553. DOI: 10.6052/0459-1879-23-277 |
[7] | Song Jiahao, Cao Wenbo, Zhang Weiwei. FD-PINN: FREQUENCY DOMAIN PHYSICS-INFORMED NEURAL NETWORK[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(5): 1195-1205. DOI: 10.6052/0459-1879-23-169 |
[8] | Fan Xincheng, Ye Zuyang, Huang Shibing, Cheng Aiping. STUDY ON CONNECTIVITY AND ENTROPY SCALE OF THREE-DIMENSIONAL FRACTURE NETWORK[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(3): 792-804. DOI: 10.6052/0459-1879-22-579 |
[9] | Qiu Rundi, Wang Jingzhu, Huang Renfang, Du Tezhuan, Wang Yiwei, Huang Chenguang. THE APPLICATION OF MODIFIED PHYSICS-INFORMED NEURAL NETWORKS IN RAYLEIGH-TAYLOR INSTABILITY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(8): 2224-2234. DOI: 10.6052/0459-1879-22-253 |
[10] | Water flooding microscopic seepage mechanism research based on three-dimension network model[J]. Chinese Journal of Theoretical and Applied Mechanics, 2005, 37(6): 783-787. DOI: 10.6052/0459-1879-2005-6-2004-361 |