EI、Scopus 收录
中文核心期刊
Yu Yanyan, Rui Zhiliang, Ding Haiping. Parallel spectral element method for 3D local-site ground motion simulations of wave scattering problem. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(6): 1342-1354. DOI: 10.6052/0459-1879-23-052
Citation: Yu Yanyan, Rui Zhiliang, Ding Haiping. Parallel spectral element method for 3D local-site ground motion simulations of wave scattering problem. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(6): 1342-1354. DOI: 10.6052/0459-1879-23-052

PARALLEL SPECTRAL ELEMENT METHOD FOR 3D LOCAL-SITE GROUND MOTION SIMULATIONS OF WAVE SCATTERING PROBLEM

  • Received Date: February 20, 2023
  • Accepted Date: May 07, 2023
  • Available Online: May 08, 2023
  • For the wave scattering problem of 3D regional sites under plane wave incidences, the free field considering non-uniform distributed nodes of the spectral element method (SEM) is derived by using analytical method, which is used as the input wave filed for wave motion simulations based on the SEM. The motions of interior nodes are computed using the high-order SEM, and the motions of the boundary surface nodes are obtained by applying the multi-transmitting formula (MTF). In addition, a parallel computation across nodes is realized by using the message passing interface (MPI) technique. Then, the parallel simulations of 3D wave scattering problems base on SEM are achieved. Finally, the accuracy and stability performance of the proposed method are validated by some typical numerical examples. The results show that the presented method can achieve high simulation accuracy for the 3D local site scattering problem under plane wave incidence in different polarization directions. Up to the third order MTF, under the condition that the stability of the internal domain computation is ensured, a long-time stable calculation results can be obtained when the artificial wave velocity of the MTF is taken to be close to the shear wave velocity of the corresponding boundary nodes, and no other additional treatments are needed to eliminate the high-frequency oscillations. The low-frequency drift instability of the MTF can be easily eliminated by applying quite small modification parameters, and the simulation accuracy is generally unaffected by it. The method of this paper has promising application prospect in the numerical simulations of regional 3D ground motion under plane wave incidences.
  • [1]
    Jayalakshmi S, Dhanya J, Raghukanth STG, et al. 3D seismic wave amplification in the Indo-Gangetic basin from spectral element simulations. Soil Dynamics and Earthquake Engineering, 2020, 129: 105923
    [2]
    冯广军, 刘忠宪, 陈頔等. 近断层山体地形三维地震动放大效应谱元法模拟. 防灾减灾工程学报, 2020, 42(4): 778-787 (Feng Guangjun, Liu Zhongxian, Chen Di, et al. Analysis on the 3D ground motion amplification of mountain topography near the fault using SEM. Journal of Disaster Prevention and Mitigation Engineering, 2020, 42(4): 778-787 (in Chinese) doi: 10.13409/j.cnki.jdpme.20201218001

    FENG Guangjun, LIU ZhongXian, CHEN Di, et al. Analysis on the 3D Ground Motion Amplification of Mountain Topography near the Fault Using SEM. Journal of Disaster Prevention and Mitigation Engineering. 2022, 42(4): 778-787(in Chinese) doi: 10.13409/j.cnki.jdpme.20201218001
    [3]
    万远春,于彦彦,丁海平等. 考虑不均匀地壳构造的四川盆地地震动模拟研究. 自然灾害学报, 2022, 31(2): 204-214 (Wan Yuanchun,Yu Yanyan, Ding Haiping, et al. Seismic simulation of Sichuan Basin considering inhomogeneous crustal structure. Journal of Natural Disasters, 2022, 31(2): 204-214 (in Chinese)

    WAN Yuanchun,YU Yanyan, DING Haiping, et al. Seismic simulation of Sichuan Basin considering inhomogeneous crustal structure. Journal of Natural Disasters. 2022. 31(2): 204-214.(in Chinese)
    [4]
    孔曦骏, 邢浩洁,李鸿晶. 流固耦合地震波动问题的显式谱元模拟方法. 力学学报, 2022, 54(9): 2513-2528 (Kong Xijun, Xing Haojie, Li Hongjing. An explicit spectral-element approach to fluid-solid coupling problems in seismic wave propagation. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(9): 2513-2528 (in Chinese)

    KONG Xijun, Xing Haojie, LI Hongjing. An explicit spectral-element approach to fluid-solid coupling problems in seismic wave propagation. Chinese Journal of Theoretical and Applied Mechanics.2022,54(9):2513-2528(in Chinese)
    [5]
    Boore DM, Larner KL, Aki K. Comparison of two indepent methods for the solution of wave-scattering problem: Response of a sedimentary basin to vertically incident SH waves. Journal of Geophysical Research, 1971, 76(2): 558-569 doi: 10.1029/JB076i002p00558
    [6]
    Tong P, Komatitsch D, Tseng T, et al. A 3-D spectral-element and frequency-wave number hybrid method for high-resolution seismic array imaging. Geophysical Research Letters, 2014, 41: 7025-7034 doi: 10.1002/2014GL061644
    [7]
    Poursartip B, Fathi A, Kallivokas LF. Seismic wave amplification by topographic features: A parametric study. Soil Dynamics and Earthquake Engineering, 2017, 92: 503-527 doi: 10.1016/j.soildyn.2016.10.031
    [8]
    Poursartip B, Kallivokas LF. Model dimensionality effects on the amplification of seismic waves. Soil Dynamics and Earthquake Engineering, 2018, 113: 572-592 doi: 10.1016/j.soildyn.2018.06.012
    [9]
    廖振鹏, 黄孔亮, 杨柏坡等. 暂态波透射边界. 中国科学A辑, 1984, 26(6): 50-56 (Liao Zhenpeng, Huang Kongliang, Yang Baipo. Transient wave transmission boundary. Chinese Science Series A, 1984, 26(6): 50-56 (in Chinese)

    LIAO Zhenpeng, HUANG Kongliang, YANG Baipo. Transient wave transmission boundary. Chinese Science Series A. 1984, 26(6): 50-56. (in Chinese)
    [10]
    Huang JJ. An incrementation-adaptive multi-transmitting boundary for seismic fracture analysis of concrete gravity dams. Soil Dynamics and Earthquake Engineering, 2018, 110: 145-158 doi: 10.1016/j.soildyn.2017.12.002
    [11]
    陈少林, 孙杰, 柯小飞. 平面波输入下海水-海床-结构动力相互作用分析. 力学学报, 2020, 52(2): 578-590 (Chen Shaolin, Sun Jie, Ke Xiaofei. Analysis of water-seabed-structure dynamic interaction excited by plane waves. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(2): 578-590 (in Chinese)

    Chen Shaolin, Sun Jie, Ke Xiaofei. Analysis of water-seabed-structure dynamic interaction excited by plane waves. Chinese Journal of Theoretical and Applied Mechanics. 2020, 52(2): 578-590 (in Chinese))
    [12]
    陈少林, 伍锐, 张娇等. 地形和土-结相互作用效应对三维跨峡谷桥梁地震响应的影响分析. 力学学报, 2021, 53(6): 1781-1794 (Chen Shaolin, Wu Rui, Zhang Jiao. et al Topography and soil-structure interaction effects on the seismic response of three-dimensional canyon- crossing bridge. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(6): 1781-1794 (in Chinese)

    Chen Shaolin, Wu Rui, Zhang Jiao. et al. Topography and soil-structure interaction effects on the seismic response of three-dimensional canyon- crossing bridge. Chinese Journal of Theoretical and Applied Mechanics. 2021, 53(06): 1781-1794 (in Chinese))
    [13]
    丁海平, 朱重洋, 于彦彦. P, SV波斜入射下凹陷地形地震动分布特征. 振动与冲击, 2017, 36(12): 88-92, 98 (Ding Haiping, Zhu Chongyang, Yu Yanyan. Characteristic of ground motions of a canyon topography under inclined P and SV waves. Journal of Vibration and Shock, 2017, 36(12): 88-92, 98 (in Chinese)

    DING Haiping, ZHU Chongyang, YU Yanyan. Characteristic of ground motions of a canyon topography under inclined P and SV waves. Journal of Vibration and Shock. 2017, 36(12): 88-92 + 98. (in Chinese))
    [14]
    周国良, 李小军, 侯春林等. SV波入射下河谷地形地震动分布特征分析. 岩土力学, 2012, 33(4): 1161-1166 (Zhou Guoliang, Li Xiaojun, Hou Chunlin, et al. Characteristic analysis of ground motions of canyon topography under incident SV seismic waves. Rock and Soil Mechanics, 2012, 33(4): 1161-1166 (in Chinese)

    ZHOU Guo-liang, LI Xiao-jun, HOU Chun-lin. et al. Characteristic analysis of ground motions of canyon topography under incident SV seismic waves. Rock and Soil Mechanics. 2012, 33(4): 1161-1166. (in Chinese))
    [15]
    李平, 薄景山, 肖瑞杰等. 地震动河谷场地效应研究. 震灾防御术, 2018, 13(2): 331-341 (Li Ping, Bo Jingshan, Xiao Ruijie. et al The Study of Effect by the Valley Site on Ground Motion. Technology for Earthquake Disaster Prevention, 2018, 13(2): 331-341 (in Chinese)

    Li Ping, Bo Jingshan, Xiao Ruijie. et al. The Study of Effect by the Valley Site on Ground Motion. Technology for Earthquake Disaster Prevention. 2018, 13(2): 331-341. (in Chinese))
    [16]
    于彦彦,丁海平,刘启方. 透射边界与谱元法的结合及对波动模拟精度的改进. 振动与冲击, 2017, 36(2): 13-22 (Yu Yanyan, Ding Haiping, Liu Qifang. Integration of transmitting boundary and spectral-element method and improvement on the accuracy of wave motion simulation. Journal of Vibration and Shock, 2017, 36(2): 13-22 (in Chinese)

    YU Yanyan, DING Haiping, LIU Qifang. Integration of transmitting boundary and spectral-element method and improvement on the accuracy of wave motion simulation. Journal of Vibration and Shock. 2017,36(2):13-22.(in Chinese)
    [17]
    Xing HJ, Li XJ, Li HJ, et al. Spectral-element formulation of multi-transmitting formula and its accuracy and stability in 1D and 2D seismic wave modeling. Soil Dynamics and Earthquake Engineering, 2021, 140: 106218 doi: 10.1016/j.soildyn.2020.106218
    [18]
    Yu YY, Ding HP, Zhang XB. Simulations of ground motions under plane wave incidence in 2D complex site based on the spectral element method (SEM) and multi-transmitting formula (MTF): SH problem. Journal of Seismology, 2021, 25(3): 967-985
    [19]
    刘晶波,王艳. 成层半空间出平面自由波场的一维化时域算法. 力学学报, 2006, 38(2): 219-225 (Liu Jingbo,Wang Yan. A 1-D time-domain method for 2-D wave motion in elastic layered half-space by antiplane wave oblique incidence. Chinese Journal of Theoretical and Applied Mechanics, 2006, 38(2): 219-225 (in Chinese)

    Liu Jingbo,Wang Yan. A 1-D time-domain method for 2-D wave motion in elastic layered half-space by antiplane wave oblique incidence. Chinese Journal of Theoretical and Applied Mechanics. 2006,38(2):219-225.(in Chinese)
    [20]
    刘晶波,王艳. 成层介质中平面内自由波场的一维化时域算法. 工程力学, 2007, 24(7): 16-22 (Liu Jingbo,Wang Yan. A 1-D time-domain method for 2-D wave motion in elastic layered half-space by inplane wave oblique incidence. Engineering Mechanics, 2007, 24(7): 16-22 (in Chinese)

    Liu Jingbo,Wang Yan. A 1-D time-domain method for 2-D wave motion in elastic layered half-space by inplane wave oblique incidence. Engineering Mechanics.2007,24(7):16-22.(in Chinese)
    [21]
    赵密, 杜修力, 刘晶波等. P-SV波斜入射时成层半空间自由场的时域算法. 地震工程学报, 2013, 35(1): 84-90 (Zhao Mi, Du Xiuli, Liu Jingbo. Time-domain method for free field in layered half space under P-SV waves of oblique incidence. China Earthquake Engineering Journal, 2013, 35(1): 84-90 (in Chinese)

    ZHAO Mi, DU Xiu-li, LIU Jing-Bo. Time-domain Method for Free Field in Layered Half Space under P-SV Waves of oblique Incidence. China Earthquake Engineering Journal. 2013.35(01): 84-90. (in Chinese))
    [22]
    高智能, 卓卫东, 谷音. SH波斜入射时有阻尼成层介质自由场的一维化时域算法. 振动与冲击, 2017, 36(16): 37-43, 84 (Gao Zhineng, Zhuo Weidong, Gu Yin. A 1D time-domain method for free field motion in layered media with damping under obliquely incident SH wave. Journal of Vibration and Shock, 2017, 36(16): 37-43, 84 (in Chinese)

    GAO Zhineng, ZHUO Weidong, GU Yin. A 1 D time-domain method for free field motion in layered media with damping under obliquely incident SH wave. Journal of Vibration and Shock. 2017, 36(16): 37-43 + 84. (in Chinese))
    [23]
    谢志南, 王立刚, 章旭斌等. 斜入射出平面自由波场勒让德谱元时域模拟方法. 岩土力学, 2021, 42(12): 3467-3474, 3484 (Xie Zhinan, Wang Ligang, Zhang Xubin, et al. Time-domain Legendre spectral element method for free-field wave simulation in layered media under obliquely incident plane wave. Rock and Soil Mechanics, 2021, 42(12): 3467-3474, 3484 (in Chinese)

    XIE Zhi-nan, WANG Li-gang, ZHANG Xu-bin. et al. Time-domain Legendre spectral element method for free-field wave simulation in layered media under obliquely incident plane wave. Rock and Soil Mechanics. 2021, 42(12): 3467-3474 + 3484. (in Chinese))
    [24]
    孙纬宇,汪精河,严松宏等. SV波斜入射下河谷地形地震动分布特征分析. 振动与冲击, 2019, 38(20): 237-243, 265 (Sun Weiyu, Wang Jinghe, Yan Songhong, et al. Characteristic analysis of ground motions of a canyon topography under obliquely incident SV waves. Journal of Vibration and Shock, 2019, 38(20): 237-243, 265 (in Chinese)

    SUN Weiyu, WANG Jinghe, YAN Songhong.et al. Characteristic analysis of ground motions of a canyon topography under obliquely incident SV waves. Journal of Vibration and Shock.2019,38(20): 237-243+265.(in Chinese)
    [25]
    赵源,杜修力,李立云. 地震动入射角度对地下结构地震响应的影响. 防灾减灾工程学报, 2010, 30(6): 624-630 (Zhao Yuan, Du Xiuli, Li Liyun. The Effect of obliquely incident seismic waves on dynamic responese of underground structures. Journal of Disaster Prevention and Mitigation Engineering, 2010, 30(6): 624-630 (in Chinese)

    ZHAO Yuan, DU Xiu-li, LI Li-yun. The Effect of obliquely Incident Seismic Waves on Dynamic Responese of underground Structures. Journal of Disaster Prevention and Mitigation Engineering. 2010, 30(6): 624-630.(in Chinese)
    [26]
    章小龙, 李小军, 陈国兴等. 黏弹性人工边界等效荷载计算的改进方法. 力学学报, 2016, 48(5): 1126-1135 (Zhang Xiaolong, Li Xiaojun, Chen Guoxing. et al An improved method of the calculation of equivalent nodal forces in viscous-elastic artificial boundary. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(5): 1126-1135 (in Chinese)

    Zhang Xiaolong, Li Xiaojun, Chen Guoxing. et al. An improved method of the calculation of equivalent nodal forces in viscous-elastic artificial boundary. Chinese Journal of Theoretical and Applied Mechanics. 2016, 48(5): 1126-1135. (in Chinese))
    [27]
    杜修力, 黄景琦, 赵密等. SV波斜入射对岩体隧道洞身段地震响应影响研究. 岩土工程学报, 2014, 36(8): 1400-1406 (Du Xiuli, Huang Jingqi, Zhao Mi, et al. Effect of oblique incidence of SV waves on seismic response of portal sections of rock tunnels. Chinese Journal of Geotechnical Engineering, 2014, 36(8): 1400-1406 (in Chinese)

    DU Xiu-li, HUANG Jing-qi, ZHAO Mi. et al. Effect of oblique incidence of SV waves on seismic response of portal sections of rock tunnels. Chinese Journal of Geotechnical Engineering. 2014, 36 (8): 1400-1406. (in Chinese))
    [28]
    王飞, 宋志强, 刘云贺等. SV波斜入射不同自由场构建方法下水电站地面厂房地震响应研究. 振动与冲击, 2021, 40(7): 9-18 (Wang Fei, Song Zhiqiang, Liu Yunhe, et al. Seismic response of ground powerhouse of hydropower station based on different free field construction methods with oblique incidence of SV wave. Journal of Vibration and Shock, 2021, 40(7): 9-18 (in Chinese)

    WANG Fei, SONG Zhiqiang, LIU Yunhe, et al. Seismic response of ground powerhouse of hydropower station based on different free field construction methods with oblique incidence of SV wave. Journal of Vibration and Shock. (in Chinese))
    [29]
    Aki K, Richards PG. Quantitative Seismology. California: University Science Books, 2002
    [30]
    廖振鹏. 工程波动理论导论. 北京: 科学出版社, 2002

    Liao Zhen-peng. Introduction to Engineering Wave Theory. Beijing: Science Press, 2002 (in Chinese))
    [31]
    He CH, Wang JT, Zhang CH. Nonlinear spectral-element method for 3D seismic-wave propagation. Bulletin of the Seismological Society of America, 2016, 106(3): 1074-1087 doi: 10.1785/0120150341
    [32]
    Komatitsch D, Vilotte JP. The spectral element method: an efficient tool to simulate the seismic response of 2D and 3D geological structures. Bulletin of the Seismological Society of America, 1998, 88(2): 368-392 doi: 10.1785/BSSA0880020368
    [33]
    Komatitsch D, Tromp J. Introduction to the spectral element method for three-dimensional seismic wave propagation. Geophysical Journal International, 1999, 139(3): 806-822 doi: 10.1046/j.1365-246x.1999.00967.x
    [34]
    Mossessian TK, Dravinski M. Amplification of elastic waves by a three dimensional valley. Part 1: Steady state response. Earthquake Engineering & Structural Dynamics, 1990, 19(5): 667-680
    [35]
    Sánchez-Sesma FJ, Eduardo Pérez-Rocha L, Chávez-Pérez S. Diffraction of elastic waves by three-dimensional surface irregularities. Part II. Bulletin of the Seismological Society of America, 1989, 79(1): 101-112
    [36]
    谢志南, 廖振鹏. 透射边界高频失稳机理及其消除方法——SH波动. 力学学报, 2021, 44(4): 745-752 (Xie Zhinan, Liao Zhenpeng. Mechanism of high frequency instability caused by transmitting boundary and method of its elimination—SH wave. Chinese Journal of Theoretical and Applied Mechanics, 2021, 44(4): 745-752 (in Chinese)

    Xie Zhinan, Liao Zhenpeng. Mechanism of High Frequency Instability Caused by Transmitting Boundary and Method of Its Elimination—SH Wave. Chinese Journal of Theoretical and Applied Mechanics.2012, 44(04):745-752.(in Chinese)
    [37]
    章旭斌, 廖振鹏, 谢志南. 透射边界高频耦合失稳机理及稳定实现——SH波动. 地球物理学报, 2015, 58(10): 3639-3648 (Zhang Xubin, Liao Zhenpeng, Xie Zhinan. Mechanism of high frequency coupling instability and stable implementation for transmitting boundary—SH wave motion. Chinese Journal of Geophysics, 2015, 58(10): 3639-3648 (in Chinese)

    ZHANG Xubin, Liao Zhenpeng, Xie Zhinan. Mechanism of high frequency coupling instability and stable implementation for transmitting boundary -SH wave motion.Chinese Journal of Geophysics.2015, 58(10): 3639- 3648.(in Chinese)
    [38]
    周正华, 廖振鹏. 消除多次透射公式飘移失稳的措施. 力学学报, 2001, 33(4): 550-554 (Zhou Zhenghua, Liao Zhenpeng. A measure for eliminating drift instability of the multi-transmitting formula. Chinese Journal of Theoretical and Applied Mechanics, 2001, 33(4): 550-554 (in Chinese)

    ZHOU Zhenghua, Liao Zhenpeng. A Measure for Eliminating Drift Instability of the Multi-Transmitting Formula. Acta Mechanica Sinica. 2001, 33(4): 550-554. (in Chinese))
    [39]
    李小军, 廖振鹏. 时域局部透射边界的计算飘移失稳. 力学学报, 1996, 28(5): 116-121 (Li Xiaojun, Liao Zhenpeng. The drift instability of local transmitting boundary in time domain. Chinese Journal of Theoretical and Applied Mechanics, 1996, 28(5): 116-121 (in Chinese)

    LI Xiaojun, Liao Zhenpeng. The drift instability of local transmitting boundary in time domain. Acta Mechanica Sinica. 1996, 28(5): 116-121. (in Chinese))
    [40]
    李小军,杨宇. 透射边界稳定性控制措施探讨. 岩土工程学报, 2012, 34(4): 641-645 (Li Xiaojun,Yang Yu. Measures for stability control of transmitting boundary. Chinese Journal of Geotechnical Engineering, 2012, 34(4): 641-645 (in Chinese)

    LI Xiao-jun,YANG Yu. Measures for stability control of transmitting boundary. Chinese Journal of Geotechnical Engineering. 2012, 34(4):641-645.(in Chinese)
    [41]
    孔曦骏,邢浩洁,李鸿晶等. 多次透射公式飘移问题的控制方法. 力学学报, 2021, 53(11): 3094-3109 (Kong Xijun, Xing Haojie, Li Hongjing, et al. An approach to controlling drift instability of multi-transmitting formula. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(11): 3094-3109 (in Chinese)

    Kong Xijun, Xing Haojie, Li Hongjing, et al. An approach to controlling drift instability of multi-transmitting formula. Chinese Journal of Theoretical and Applied Mechanics. 2021,53(11):3097-3109.(in Chinese)
    [42]
    章旭斌, 谢志南. 波动谱元模拟中透射边界稳定性分析. 工程力学, 2022, 39(10): 26-35 (Zhang Xubin, Xie Zhinan. Stability analysis of transmitting boundary in wave spectral element simulation. Engineering Mechanics, 2022, 39(10): 26-35 (in Chinese)

    ZHANG Xu-bin, XIE Zhi-nan. Stability analysis of transmitting boundary in wave spectral element simulation. Engineering Mechanics. 2022,39(10):26-35.(in Chinese)
    [43]
    章旭斌, 廖振鹏, 谢志南. 透射边界高频失稳机理及稳定实现——P-SV波动. 地球物理学报, 2021, 64(10): 3646-3656 (Zhang Xubin, Liao Zhenpeng, Xie Zhinan. Mechanism of high frequency instability and stable implementation for transimtting boundary—P-SV wave motion. Chinese Journal of Geophysics, 2021, 64(10): 3646-3656 (in Chinese)

    ZHANG Xu-bin, LIAO Zhenpeng, XIE Zhi-nan. Mechanism of high frequency instability and stable implementation for transimtting boundary--P-SV wave motion. Chinese Journal of Geophysics. 2021, 64(10): 3646-3656.(in Chinese)
    [44]
    Basabe D, Jonás D, Sen MK. Grid dispersion and stability criteria of some common finite-element methods for acoustic and elastic wave equations. Geophysics, 2007, 72(6): 81-95
    [45]
    Pozrikidis C. Introduction to Finite and Spectral Element Methods using MATLAB, Second Edition. CRC Press, 2014
  • Related Articles

    [1]Li Xiaojun, Zhang Xun, Xing Haojie. A TRANSMITTING BOUNDARY WITH TIME-VARYING COMPUTATIONAL ARTIFICIAL WAVE VELOCITIES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(10): 2924-2935. DOI: 10.6052/0459-1879-24-178
    [2]Wang Changtao, Dai Honghua, Zhang Zhe, Wang Xuechuan, Yue Xiaokui. PARALLEL ACCELERATED LOCAL VARIATIONAL ITERATION METHOD AND ITS APPLICATION IN ORBIT COMPUTATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(4): 991-1003. DOI: 10.6052/0459-1879-22-592
    [3]Bao Yun, Xi Lingchu. PARALLEL DIRECT METHOD OF LES FOR TURBULENT WIND FIELD WITH HIGH REYNOLDS NUMBER[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(3): 656-662. DOI: 10.6052/0459-1879-20-052
    [4]Shaolin Chen, Xiaofei Ke, Hongxiang Zhang. A UNIFIED COMPUTATIONAL FRAMEWORK FOR FLUID-SOLID COUPLING IN MARINE EARTHQUAKE ENGINEERING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 594-606. DOI: 10.6052/0459-1879-18-333
    [5]Ma Tianbao, Ren Huilan, Li Jian, Ning Jianguo. LARGE SCALE HIGH PRECISION COMPUTATION FOR EXPLOSION AND IMPACT PROBLEMS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3): 599-608. DOI: 10.6052/0459-1879-15-382
    [6]Miao Xinqiang, Jin Xianlong, Ding Junhong. A HIERARCHICAL PARALLEL COMPUTING APPROACH FOR STRUCTURAL STATIC FINITE ELEMENT ANALYSIS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(4): 611-618. DOI: 10.6052/0459-1879-13-335
    [7]Yang Shunhua. Implementation of reduced chemical kinetics for kerosene combustion and in situ adaptive tabulation in parallel computations of scramjet[J]. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(6): 1090-1097. DOI: 10.6052/0459-1879-2010-6-lxxb2009-490
    [8]Fujun Wang, Liping Wang, Jiangang Cheng, Zhenhan Yao. A contact algorithm for parallel computation of FEM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(3): 422-427. DOI: 10.6052/0459-1879-2007-3-2006-407
    [9]A PARALELL ANALYSIS METHOD FOR FULL COUPLED MULTIPHACE FLOW 1)[J]. Chinese Journal of Theoretical and Applied Mechanics, 1999, 31(3): 276-284. DOI: 10.6052/0459-1879-1999-3-1995-032
    [10]PARALLEL COMPUTATIONAL SCHEME FOR THE MANIPULATOR FORWARD DYNAMICS BASED ON THE NON-RECURSIVE FORMULATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 1997, 29(3): 369-372. DOI: 10.6052/0459-1879-1997-3-1995-240
  • Cited by

    Periodical cited type(14)

    1. 徐小凤,陈少林,孙杰. 近海单桩式风机地震响应分区耦合分析方法. 岩土工程学报. 2025(01): 96-105 .
    2. 陈宝魁,陈佳佳,胡思聪,陈少林,范力. 海床坡度对地震动特性的影响及其临界值. 工程力学. 2025(04): 110-120 .
    3. 张娇,陈少林,刘田田,张艳红. 库水-淤砂层-坝体-坝基体系地震响应分析. 地震研究. 2024(01): 62-73 .
    4. 吴绍恒,陈少林,刘鸿泉,孙晓颖. 地下水位对核电结构地震反应的影响分析. 振动工程学报. 2024(04): 556-564 .
    5. 陈少林,王俊豪,周国良. 海上浮式核电平台地震响应分区分析方法. 力学学报. 2024(10): 3084-3098 . 本站查看
    6. 黄朝龙,陈少林,张丽芳,沈吉荣. 水深对跨库区桥梁地震响应的影响分析. 地震工程与工程振动. 2023(05): 33-45 .
    7. 刘田田,陈少林,张娇,张艳红. 淤砂层对重力坝地震响应的影响分析. 地震工程与工程振动. 2023(06): 203-215 .
    8. 赵凯,卢艺静,王彦臻,李兆焱,陈国兴. 海底盾构隧道结构端部效应及抗减震措施研究. 振动与冲击. 2022(16): 33-42 .
    9. 孔曦骏,邢浩洁,李鸿晶. 流固耦合地震波动问题的显式谱元模拟方法. 力学学报. 2022(09): 2513-2528 . 本站查看
    10. 孙杰,陈少林,王波,陈宝魁,王东升. 海水-海床-桥梁系统地震响应分析分区并行方法研究. 中国科学:技术科学. 2022(10): 1495-1508 .
    11. 黄朝龙,陈少林,沈吉荣,张丽芳. 基于流固耦合统一计算框架的三维大规模海域场地地震反应分析——以东京湾为例. 震灾防御技术. 2022(03): 420-430 .
    12. 孔曦骏,邢浩洁,李鸿晶,周正华. 多次透射公式飘移问题的控制方法. 力学学报. 2021(11): 3097-3109 . 本站查看
    13. 陈少林,孙杰,柯小飞. 平面波输入下海水-海床-结构动力相互作用分析. 力学学报. 2020(02): 578-590 . 本站查看
    14. 王立安,赵建昌,杨华中. 饱和多孔地基与矩形板动力相互作用的非轴对称混合边值问题. 力学学报. 2020(04): 1189-1198 . 本站查看

    Other cited types(7)

Catalog

    Article Metrics

    Article views (568) PDF downloads (70) Cited by(21)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return