EI、Scopus 收录
中文核心期刊
Guo Xin, Chen Suwen. Constitutive modelling of silicone adhesive considering Mullins effect. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(6): 1308-1318. DOI: 10.6052/0459-1879-23-035
Citation: Guo Xin, Chen Suwen. Constitutive modelling of silicone adhesive considering Mullins effect. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(6): 1308-1318. DOI: 10.6052/0459-1879-23-035

CONSTITUTIVE MODELLING OF SILICONE ADHESIVE CONSIDERING MULLINS EFFECT

  • Received Date: February 06, 2023
  • Accepted Date: April 26, 2023
  • Available Online: April 27, 2023
  • Silicone adhesive has been widely used in assembly glass curtain walls. To achieve a reliable bonding system, an effective description of material behavior is required. However, commonly used phenomenological hyperelastic models have not considered the microstructure properties of materials and cannot describe the mechanisms of their mechanical behaviors, while the classical entropic hyperelastic models often do not consider the non-affine deformation, entanglement effect or other features of polymer network. The above deficiencies make it difficult for the existing models to effectively simulate the mechanical behavior of silicone adhesive, especially the significant Mullins effect under cyclic loading. For these reasons, in this paper, based on the non-affine network model and microsphere model of polymer chain distribution, we modified the macro-micro deformation transformation and the evolution of chain conformation to consider spatial distribution of polymer chains in finite directions. Based on the modified model, network alteration functions are proposed for crosslinked and entangled network respectively using network alteration theory. These functions describe the evolution of polymer network under cyclic loading to model Mullins effect. Considering the microstructure properties and deformation mechanisms of silicone adhesive, the modified non-affine network model can describe the characteristics of polymer network, including non-affine deformation, entanglement effect, finite chain extensibility and spatial chain distribution. The comparisons with the experimental data and other model results demonstrate the capability of the modified model to accurately predict the mechanical behavior of silicone adhesive under various loading conditions, as well as the permanent set and modulus degradation of Mullins effect, which shows good potential in engineering applications.
  • [1]
    De Buyl F. Silicone sealants and structural adhesives. International Journal of Adhesion & Adhesives, 2001, 21: 411-422
    [2]
    Sitte S, Brasseur MJ, Carbary LD, et al. Preliminary evaluation of the mechanical properties and durability of transparent structural silicone adhesive (TSSA) for point fixing in glazing. Journal of ASTM International, 2011, 8(10): 1-27
    [3]
    Santarsiero M, Louter C, Nussbaumer A. The mechanical behaviour of SentryGlas® ionomer and TSSA silicon bulk materials at different temperatures and strain rates under uniaxial tensile stress state. Glass Structures and Engineering, 2016, 1(2): 395-415 doi: 10.1007/s40940-016-0018-1
    [4]
    Broker KA, Fisher S, Memari AM. Seismic racking test evaluation of silicone used in a four-sided structural sealant glazed curtain wall system. Journal of ASTM International, 2012, 9(3): 1-22
    [5]
    Clift CD, Carbary LD, Hutley P, et al. Next generation structural silicone glazing. Journal of Facade Design and Engineering, 2015, 2(3-4): 137-161 doi: 10.3233/FDE-150020
    [6]
    Hagl A. Mechanical characteristics of degraded silicone bonded point supports. Journal of ASTM International, 2011, 9(2): 1-14
    [7]
    Staudt Y. Proposal of a failure criterion of adhesively bonded connections with silicone. [PhD Thesis]. Luxembourg: University of Luxembourg, 2018
    [8]
    Santarsiero M, Louter C, Nussbaumer A. Laminated connections for structural glass applications under shear loading at different temperatures and strain rates. Construction and Building Materials, 2016, 128: 214-237 doi: 10.1016/j.conbuildmat.2016.10.045
    [9]
    Dias V, Odenbreit C, Hechler O, et al. Development of a constitutive hyperelastic material law for numerical simulations of adhesive steel-glass connections using structural silicone. International Journal of Adhesion and Adhesives, 2014, 48: 194-209 doi: 10.1016/j.ijadhadh.2013.09.043
    [10]
    Schaaf B, Richter C, Feldmann M, et al. Material parameter determination for the simulation of hyperelastic bonds in civil engineering considering a novel material model. International Journal of Adhesion and Adhesives, 2020, 103: 102692 doi: 10.1016/j.ijadhadh.2020.102692
    [11]
    Drass M, Bois PAD, Schneider J, et al. Pseudo-elastic cavitation model: part I—finite element analyses on thin silicone adhesives in façades. Glass Structures and Engineering, 2020, 5(1): 41-65 doi: 10.1007/s40940-019-00115-4
    [12]
    Drass M, Bartels N, Schneider J, et al. Pseudo-elastic cavitation model—part II: extension to cyclic behavior of transparent silicone adhesives. Glass Structures and Engineering, 2020, 5(1): 67-82 doi: 10.1007/s40940-019-00103-8
    [13]
    王晓明, 吴荣兴, 蒋义等. 显式模拟类橡胶材料应力软化引起的不可恢复变形及其各向异性特征. 力学学报, 2021, 53(7): 1999-2009 (Wang Xiaoming, Wu Rongxing, Jiang Yi, et al. Explicitly modeling permanent set and anisotropy property induced by stress softening for rubber-like materials. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(7): 1999-2009 (in Chinese) doi: 10.6052/0459-1879-21-060

    Wang Xiaoming, Wu Rongxing, Jiang Yi, et al. Explicitly modeling permanent set and anisotropy property induced by stress softening for rubber-like materials. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(7): 1999-2009. (in Chinese)) doi: 10.6052/0459-1879-21-060
    [14]
    Arruda EM, Boyce MC. A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials. Journal of the Mechanics and Physics of Solids, 1993, 41(2): 389-412 doi: 10.1016/0022-5096(93)90013-6
    [15]
    Anssari-Benam A, Bucchi A. A generalised neo-Hookean strain energy function for application to the finite deformation of elastomers. International Journal of Non-Linear Mechanics, 2021, 128: 103626 doi: 10.1016/j.ijnonlinmec.2020.103626
    [16]
    Miehe C, Göktepe S, Lulei F. A micro-macro approach to rubber-like materials—part I: the non-affine micro-sphere model of rubber elasticity. Journal of the Mechanics and Physics of Solids, 2004, 52(11): 2617-2660 doi: 10.1016/j.jmps.2004.03.011
    [17]
    Xiang Y, Zhong D, Wang P, et al. A general constitutive model of soft elastomers. Journal of the Mechanics and Physics of Solids, 2018, 117: 110-122 doi: 10.1016/j.jmps.2018.04.016
    [18]
    付宾, 杨晓翔, 李庆. 炭黑填充橡胶材料的修正三链模型和Mullins模型. 固体力学学报, 2015, 36(5): 421-428 (Fu Bin, Yang Xiaoxiang, Li Qing. Modified 3-chain model and Mullins constitutive model of carbon black filled rubber materials. Chinese Journal of Solid Mechanics, 2015, 36(5): 421-428 (in Chinese) doi: 10.19636/j.cnki.cjsm42-1250/o3.2015.05.007

    Fu Bin, Yang Xiaoxiang, Li Qing. Modified 3-chain model and Mullins constitutive model of carbon black filled rubber materials. Chinese Journal of Solid Mechanics, 2015, 36(5): 421-428. (in Chinese)) doi: 10.19636/j.cnki.cjsm42-1250/o3.2015.05.007
    [19]
    Darabi E, Itskov M. A generalized tube model of rubber elasticity. Soft Matter, 2021, 17(6): 1675-1684 doi: 10.1039/D0SM02055A
    [20]
    魏志刚, 陈海波, 罗仲龙等. 橡胶材料弹性的一种新的螺旋管模型. 力学学报, 2023, 55(2): 470-485 (Wei Zhigang, Chen Haibo, Luo Zhonglong, et al. A new helical tube model for the elasticity of rubber-like materials. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(2): 470-485 (in Chinese) doi: 10.6052/0459-1879-22-435

    Wei Zhigang, Chen Haibo, Luo Zhonglong, et al. A new helical tube model for the elasticity of rubber-like materials. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(2): 470-485. (in Chinese)) doi: 10.6052/0459-1879-22-435
    [21]
    Tang S, Greene MS, Liu WK. Two-scale mechanism-based theory of nonlinear viscoelasticity. Journal of the Mechanics and Physics of Solids, 2012, 60(2): 199-226 doi: 10.1016/j.jmps.2011.11.003
    [22]
    Yuan B, Zeng F, Cui J, et al. Molecular simulation guided constitutive modeling of filled rubber: Bridging structural parameters to constitutive equations. Polymer, 2022, 254: 125090 doi: 10.1016/j.polymer.2022.125090
    [23]
    Li Y, Tang S, Kröger M, et al. Molecular simulation guided constitutive modeling on finite strain viscoelasticity of elastomers. Journal of the Mechanics and Physics of Solids, 2016, 88: 204-226 doi: 10.1016/j.jmps.2015.12.007
    [24]
    Li Y, Liu Z, Jia Z, et al. Modular-based multiscale modeling on viscoelasticity of polymer nanocomposites. Computational Mechanics, 2017, 59: 187-201 doi: 10.1007/s00466-016-1346-3
    [25]
    Zhong D, Xiang Y, Yin T, et al. A physically-based damage model for soft elastomeric materials with anisotropic Mullins effect. International Journal of Solids and Structures, 2019, 176-177: 121-134 doi: 10.1016/j.ijsolstr.2019.05.018
    [26]
    Plagge J, Klüppel M. A physically based model of stress softening and hysteresis of filled rubber including rate and temperature dependency. International Journal of Plasticity, 2017, 89: 173-196 doi: 10.1016/j.ijplas.2016.11.010
    [27]
    Plagge J, Ricker A, Kröger NH, et al. Efficient modeling of filled rubber assuming stress-induced microscopic restructurization. International Journal of Engineering Science, 2020, 151: 103291 doi: 10.1016/j.ijengsci.2020.103291
    [28]
    张成, 苟晓凡, 肖锐. 超弹−黏弹−损伤仿射微球模型及其应用. 固体力学学报, 2022, 43(4): 397-405 (Zhang Cheng, Gou Xiaofan, Xiao Rui. A hyper-visco-damage affine microsphere model and its application. Chinese Journal of Solid Mechanics, 2022, 43(4): 397-405 (in Chinese) doi: 10.19636/j.cnki.cjsm42-1250/o3.2022.001

    Zhang Cheng, Gou Xiaofan, Xiao Rui. A hyper-visco-damage affine microsphere model and its application. Chinese Journal of Solid Mechanics, 2022, 43(4): 397-405. (in Chinese)) doi: 10.19636/j.cnki.cjsm42-1250/o3.2022.001
    [29]
    Shen S, Zhong D, Qu S, et al. A hyperelastic-damage model based on the strain invariants. Extreme Mechanics Letters, 2022, 52: 101641 doi: 10.1016/j.eml.2022.101641
    [30]
    肖锐, 向玉海, 钟旦明等. 考虑缠结效应的超弹性本构模型. 力学学报, 2021, 53(4): 1028-1037 (Xiao Rui, Xiang Yuhai, Zhong Danming, et al. Hyperelastic model with entanglement effect. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(4): 1028-1037 (in Chinese) doi: 10.6052/0459-1879-21-008

    Xiao Rui, Xiang Yuhai, Zhong Danming, et al. Hyperelastic model with entanglement effect. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(4): 1028-1037. (in Chinese)) doi: 10.6052/0459-1879-21-008
    [31]
    Zhan L, Wang S, Qu S, et al. A new micro–macro transition for hyperelastic materials. Journal of the Mechanics and Physics of Solids, 2023, 171: 105156 doi: 10.1016/j.jmps.2022.105156
    [32]
    Davidson JD, Goulbourne NC. A nonaffine network model for elastomers undergoing finite deformations. Journal of the Mechanics and Physics of Solids, 2013, 61(8): 1784-1797 doi: 10.1016/j.jmps.2013.03.009
    [33]
    Rubinstein M, Panyukov S. Nonaffine deformation and elasticity of polymer networks. Macromolecules, 1997, 30(25): 8036-8044 doi: 10.1021/ma970364k
    [34]
    Rubinstein M, Panyukov S. Elasticity of polymer networks. Macromolecules, 2002, 35(17): 6670-6686 doi: 10.1021/ma0203849
    [35]
    Ricker A, Kröger NH, Wriggers P. Comparison of discontinuous damage models of Mullins-type. Archive of Applied Mechanics, 2021, 91(10): 4097-4119 doi: 10.1007/s00419-021-02026-9
    [36]
    Marckmann G, Verron E, Gornet L, et al. A theory of network alteration for the Mullins effect. Journal of the Mechanics and Physics of Solids, 2002, 50: 2011-2028 doi: 10.1016/S0022-5096(01)00136-3
    [37]
    Zhu P, Zhong Z. Constitutive modelling for the Mullins effect with permanent set and induced anisotropy in particle-filled rubbers. Applied Mathematical Modelling, 2021, 97: 19-35 doi: 10.1016/j.apm.2021.03.031
    [38]
    Yang TT, Shui Y, Wei CS, et al. Effect of cyclic straining with various rates on stress softening/hysteresis and structural evolution of filled rubber: a time-resolved SANS study. Composites Part B: Engineering, 2022, 242: 110100
    [39]
    Diani J, Fayolle B, Gilormini P. A review on the Mullins effect. European Polymer Journal, 2009, 45(3): 601-612 doi: 10.1016/j.eurpolymj.2008.11.017
    [40]
    Drass M, Schwind G, Schneider J, et al. Adhesive connections in glass structures—part I: experiments and analytics on thin structural silicone. Glass Structures and Engineering, 2018, 3(1): 39-54 doi: 10.1007/s40940-017-0046-5
    [41]
    Drass M, Muth J, Louter C, et al. Stress whitening effects in transparent structural silicone adhesives. Glass Structures and Engineering, 2019, 4(3): 433-448 doi: 10.1007/s40940-019-00102-9
    [42]
    Drass M, Schwind G, Schneider J, et al. Adhesive connections in glass structures—part II: material parameter identification on thin structural silicone. Glass Structures and Engineering, 2018, 3(1): 55-74 doi: 10.1007/s40940-017-0048-3
  • Related Articles

    [1]Wang Xiaoming, Tian Xingxing, Zhang Zhen, Xiao Heng. EXPLICITLY MODELING THE MULLINS EFFECT OF RUBBER-LIKE MATERIAL WITH RATE DEPENDENCY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(12): 3553-3563. DOI: 10.6052/0459-1879-24-254
    [2]Li Feng, Peng Tianbo. AN HDR THERMAL-HYPER-VISCOELASTIC CONSTITUTIVE MODEL WITH MULLINS EFFECT[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(12): 3498-3506. DOI: 10.6052/0459-1879-24-235
    [3]Pan Xiaoguo, Wang Kai, Deng Weixin. ACCELERATING CONVERGENCE ALGORITHM FOR PHYSICS-INFORMED NEURAL NETWORKS BASED ON NTK THEORY AND MODIFIED CAUSALITY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(7): 1943-1958. DOI: 10.6052/0459-1879-24-087
    [4]Wu Xueyan, Li Yu, Xie Yanyan, Li Fei, Chen Sheng. RESEARCH ON HETEROGENEOUS SOLID STRESS MODEL BASED ON ARTIFICIAL NEURAL NETWORK[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(2): 532-542. DOI: 10.6052/0459-1879-22-511
    [5]Chen Jian, Wang Dongdong, Liu Yuxiang, Chen Jun. A RECURRENT CONVOLUTIONAL NEURAL NETWORK SURROGATE MODEL FOR DYNAMIC MESHFREE ANALYSIS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(3): 732-745. DOI: 10.6052/0459-1879-21-565
    [6]Xiao Rui, Xiang Yuhai, Zhong Danming, Qu Shaoxing. HYPERELASTIC MODEL WITH ENTANGLEMENT EFFECT[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(4): 1028-1037. DOI: 10.6052/0459-1879-21-008
    [7]Xiaoming Wang, Rongxing Wu, Heng Xiao. EXPLICIT MODELING THE HYSTERESIS LOOPS OF THE MULLINS EFFECT FOR RUBBER-LIKE MATERIALS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 484-493. DOI: 10.6052/0459-1879-18-334
    [8]Liu Haijiao, Zhang Xuhui, Lu Xiaobing. EFFECT OF PARALLEL MICRO-FRACTURES ON FLOODING BASED ON PORE-FRACTURE NETWORK MODEL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(4): 890-898. DOI: 10.6052/0459-1879-18-025
    [9]Water flooding microscopic seepage mechanism research based on three-dimension network model[J]. Chinese Journal of Theoretical and Applied Mechanics, 2005, 37(6): 783-787. DOI: 10.6052/0459-1879-2005-6-2004-361
    [10]BIFURCATION THEORY METHODS IN THE DESIGN OF ANALOG NEURAL NETWORKS[J]. Chinese Journal of Theoretical and Applied Mechanics, 1994, 26(3): 312-319. DOI: 10.6052/0459-1879-1994-3-1995-551
  • Cited by

    Periodical cited type(1)

    1. 宋义虎,李承宇. 橡胶复合材料的Mullins效应. 工程塑料应用. 2024(06): 70-81 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (744) PDF downloads (80) Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return