Citation: | Sun Yibo, Wei Sha, Ding Hu, Chen Liqun. Stochastic dynamic response analysis of pipe conveying fluid based on the path integral method. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(6): 1371-1381. DOI: 10.6052/0459-1879-23-032 |
[1] |
徐鉴, 杨前彪. 输液管模型及其非线性动力学近期研究进展. 力学进展, 2004, 2: 182-194 (Xu Jian, Wang Qianbiao. Recent advances of pipe conveying fluid models and nonlinear dynamics. Advances in mechanics, 2004, 2: 182-194 (in Chinese) doi: 10.3321/j.issn:1000-0992.2004.02.003
Xu Jian, Wang Qianbiao. Recent advances of pipe conveying fluid models and nonlinear dynamics. Advances in mechanics, 2004, (02): 182-194 (in Chinese)) doi: 10.3321/j.issn:1000-0992.2004.02.003
|
[2] |
徐鉴, 王琳. 输液管动力学分析和控制. 北京: 科学出版社, 2015
Xu Jian, Wang Lin. Dynamics and Control of Fluid-Conveying Pipe Systems. Beijing: Science Press, 2015 (in Chinese))
|
[3] |
王琳, 匡友弟, 黄玉盈等. 管振动与稳定性研究的新进展: 从宏观尺度到微纳米尺度. 固体力学学报, 2010, 31(5): 481-495 (Wang Lin, Kuang Youdi, Huang Yuying, et al. Recent progress in the study of vibration and stability of pipe conveying fluid: from macroscopic scale to micro-nano scale. Chinese journal of solid mechanics, 2010, 31(5): 481-495 (in Chinese)
(Wang Lin, Kuang Youdi, Huang Yuying, et al. Recent progress in the study of vibration and stability of pipe conveying fluid: from macroscopic scale to micro-nano scale. Chinese journal of solid mechanics, 2010, 31(05): 481-495 (in Chinese))
|
[4] |
Chen S. Forced vibration of a cantilevered tube conveying fluid. Journal of the Acoustical Society of America, 1970, 48(3B): 773-775 doi: 10.1121/1.1912205
|
[5] |
Lottati I, Kornecki A. The effect of an elastic foundation and of dissipative forces on the stability of fluid-conveying pipes. Journal of Sound and Vibration, 1986, 109(2): 327-338
|
[6] |
黄慧春, 张艳雷, 陈立群. 受迫振动的超临界输液管Galerkin数值模拟. 应用数学和力学, 2014, 35(10): 1100-1106 (Huang Huichun, Zhang Yanlei, Chen Liqun. Galerkin numerical simulation of the supercritical pipe conveying fluid under forced vibration. Applied Mathematics and Mechanic, 2014, 35(10): 1100-1106 (in Chinese) doi: 10.1016/S0022-460X(86)80012-8
Huang Huichun, Zhang Yanlei, Chen Liqun. Galerkin numerical simulation of the supercritical pipe conveying fluid under forced vibration. Applied Mathematics and Mechanic, 2014, 35(10): 1100-1106(in Chinese) doi: 10.1016/S0022-460X(86)80012-8
|
[7] |
王乙坤, 王琳. 分布式运动约束下悬臂输液管的参数共振研究. 力学学报, 2019, 51(2): 558-568 (Wang Yikun, Wang Lin. Parametric resonance of a cantilevered pipe conveying fluid subjected to distributed motion constraints. Journal of Dynamics and Control, 2019, 51(2): 558-568 (in Chinese)
(Wang Yikun, Wang Lin. Parametric resonance of a cantilevered pipe conveying fluid subjected to distributed motion constraints. Journal of Dynamics and control, 2019, 51(02): 558-568(in Chinese))
|
[8] |
Ye SQ, Ding H, Wei S, et al. Non-trivial equilibriums and natural frequencies of a slightly curved pipe conveying supercritical fluid. Ocean Engineering, 2021, 227: 108899
|
[9] |
张挺, 林震寰, 林通等. 内激励型振荡衰减流作用下输流管道动力不稳定分析. 振动与冲击, 2021, 40(3): 284-290 (Zhang Ting, Lin Zhenhuan, Lin Tong, et al. Dynamic instability analysis of pipeline conveying fluid under action of internally excited oscillation attenuation flow. Journal of Vibration and Shock, 2021, 40(3): 284-290 (in Chinese) doi: 10.13465/j.cnki.jvs.2021.03.037
Zhang Ting, Lin Zhenhuan, Lin Tong, et al. Dynamic instability analysis of pipeline conveying fluid under action of internally excited oscillation attenuation flow. Journal of vibration and shock, 2021, 40(03): 284-290(in Chinese) doi: 10.13465/j.cnki.jvs.2021.03.037
|
[10] |
颜雄, 魏莎, 毛晓晔等. 两端弹性支承输流管道固有特性研究. 力学学报, 2022, 54(5): 1341-1352 (Yan Xiong, Wei Sha, Mao Xiaoye, et al. Study on natural charactertics of fluid-conveying pipes with elastic supports at both ends. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(5): 1341-1352 (in Chinese)
Yan xiong, Wei Sha, Mao Xiaoye, et al. Study on natural charactertics of fluid-conveying pipes with elastic supports at both ends. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(05): 1341-1352(in Chinese)
|
[11] |
Wei S, Yan X, Fan X, et al. Vibration of fluid-conveying pipe with nonlinear supports at both ends. Applied Mathematics and Mechanic (English Edition), 2022, 43(6): 845-862 doi: 10.1007/s10483-022-2857-6
|
[12] |
Liang F, Qian Y, Chen Y, et al. Nonlinear forced vibration of spinning pipes conveying fluid under lateral harmonic excitation. International Journal of Applied Mechanics, 2021, 13(9): 2150098 doi: 10.1142/S1758825121500988
|
[13] |
Zhou K, Dai HL, Wang L, et al. Modeling and nonlinear dynamics of cantilevered pipe with tapered free end concurrently subjected to axial internal and external flows. Mechanical Systems and Signal Processing, 2022, 169: 108794 doi: 10.1016/j.ymssp.2021.108794
|
[14] |
Guo X, Gao P, Ma H, et al. Vibration characteristics analysis of fluid-conveying pipes concurrently subjected to base excitation and pulsation excitation. Mechanical Systems and Signal Processing, 2023, 189: 110086 doi: 10.1016/j.ymssp.2022.110086
|
[15] |
Zhai HB, Wu ZY, Liu YS, et al. Dynamic response of pipeline conveying fluid to random excitation. Nuclear Engineering and Design, 2011, 241(8): 2744-2749 doi: 10.1016/j.nucengdes.2011.06.024
|
[16] |
Gan CB, Guo SQ, Lei H, et al. Random uncertainty modeling and vibration analysis of a straight pipe conveying fluid. Nonlinear Dynamic, 2014, 77(3): 503-519 doi: 10.1007/s11071-014-1313-5
|
[17] |
Lotfan S, Fathi R, Ettefagh MM. Size-dependent nonlinear vibration analysis of carbon nanotubes conveying multiphase flow. International Journal of Mechanical Sciences, 2016, 115: 723-735
|
[18] |
Yang Y, Zhang Y. Random vibration response of three-dimensional multi-span hydraulic pipeline system with multipoint base excitations. Thin-Walled Structures, 2021, 166: 108124 doi: 10.1016/j.tws.2021.108124
|
[19] |
Li W, Zhang H, Qu W. Stress response of a straight hydraulic pipe under random vibration. International Journal of Pressure Vessels and Piping, 2021, 194: 104502 doi: 10.1016/j.ijpvp.2021.104502
|
[20] |
Qu W, Zhang H, Li W, et al. Dynamic characteristics of a hydraulic curved pipe subjected to random vibration. International Journal of Pressure Vessels and Piping, 2021, 193: 104442 doi: 10.1016/j.ijpvp.2021.104442
|
[21] |
Sazesh S, Shams S. Vibration analysis of cantilever pipe conveying fluid under distributed random excitation. Journal of Fluids and Structures, 2019, 87: 84-101 doi: 10.1016/j.jfluidstructs.2019.03.018
|
[22] |
Yu JS, Lin YK. Numerical path integration of a non-homogeneous Markov process. International Journal of Non-Linear Mechanics, 2004, 39(9): 1493-1500 doi: 10.1016/j.ijnonlinmec.2004.02.011
|
[23] |
Yu JS, Cai GQ, Lin YK. A new path integration procedure based on Gauss-Legendre scheme. International Journal of Non-Linear Mechanics, 1997, 32(4): 759-768 doi: 10.1016/S0020-7462(96)00096-0
|
[24] |
Masud A, Bergman LA. Application of multi-scale finite element methods to the solution of the Fokker-Planck equation. Computer Methods in Applied Mechanics and Engineering, 2005, 194(12-16): 1513-1526 doi: 10.1016/j.cma.2004.06.041
|
[25] |
Roberts JB, Spanos PD. Random Vibration and Statistical Linearization. Courier Dover Publications, 2003
|
[26] |
Shinozuka M. Monte Carlo solution of structural dynamics. Computers and Structures, 1972, 2(5-6): 855-874 doi: 10.1016/0045-7949(72)90043-0
|
[27] |
Wojtkiewicz SF, Johnson EA, Bergman LA, et al. Spencer, response of stochastic dynamical systems driven by additive Gaussian and Poisson white noise: Solution of a forward generalized Kolmogorov equation by a spectral finite difference method. Computer Methods in Applied Mechanics and Engineering, 1999, 168(1-4): 73-89 doi: 10.1016/S0045-7825(98)00098-X
|
[28] |
Huang ZL, Zhu WQ, Suzuki Y. Stochastic averaging of strongly non-linear oscillators under combined harmonic and white-noise excitations. Journal of Sound and Vibration, 2000, 238(2): 233-256 doi: 10.1006/jsvi.2000.3083
|
[29] |
Yue X, Cui S, Pei B, et al. Responses of stochastic dynamical systems by the generalized cell mapping method with deep learning. International Journal of Non-Linear Mechanics, 2022, 147: 104190 doi: 10.1016/j.ijnonlinmec.2022.104190
|
[30] |
Wehner MF, Wolfer WG. Numerical evaluation of path-integral solutions to Fokker-Planck equations. III. Time and functionally dependent coefficients. Physical Review A, General Physics, 1987, 35(4): 1795-1801
|
[31] |
Li X, Ding H, Chen LQ. Effects of weights on vibration suppression via a nonlinear energy sink under vertical stochastic excitations. Mechanical Systems and Signal Processing, 2022, 173: 109073 doi: 10.1016/j.ymssp.2022.109073
|
[32] |
Xue JR, Zhang YW, Ding H, et al. Vibration reduction evaluation of a linear system with a nonlinear energy sink under a harmonic and random excitation. Applied Mathematics and Mechanics (English Edition), 2020, 41(1): 1-14
|
[33] |
王亮, 景康康, 彭佳慧等. 非光滑变换下随机碰撞系统的路径积分算法. 山东大学学报(理学版), 2022, 57(3): 68-77 (Wang Liang, Jing Kangkang, Peng Jiahui, et al. Path integration method for the stochastic vibro-impact system under the non-smooth transformation. Journal of Shandong University (Natural Science), 2022, 57(3): 68-77 (in Chinese) doi: 10.1007/s10483-020-2560-6
Wang Liang, Jing Kangkang, Peng Jiahui, et al. Path integration method for the stochastic vibro-impact system under the non-smooth transformation. Journal of Shandong University (Natural Science), 2022, 57(03): 68-77(in Chinese) doi: 10.1007/s10483-020-2560-6
|
[34] |
Zhu HT, Duan LL. Probabilistic solution of non-linear random ship roll motion by path integration. International Journal of Non-Linear Mechanics, 2016, 83: 1-8 doi: 10.1016/j.ijnonlinmec.2016.03.010
|
[35] |
Zan WR, Xu Y, Metzler R, et al. First-passage problem for stochastic differential equations with combined parametric Gaussian and Lévy white noises via path integral method. Journal of Computational Physics, 2021, 435: 110264 doi: 10.1016/j.jcp.2021.110264
|
[36] |
Zan WR, Jia WT, Xu Y. Reliability of dynamical systems with combined Gaussian and Poisson white noise via path integral method. Probabilistic Engineering Mechanics, 2022, 68: 103252 doi: 10.1016/j.probengmech.2022.103252
|
[37] |
徐严钢, 朱海涛, 刘治国. 三维路径积分法的积分区间以及子区间数目选取方法研究. 应用力学学报, 2021, 38(4): 1358-1365 (Xu Yangang, Zhu Haitao, Liu Zhiguo. Path integration method for the stochastic vibro-impact system under the non-smooth transformation. Chinese Journal of Applied Mechanics, 2021, 38(4): 1358-1365 (in Chinese) doi: 10.11776/cjam.38.04.C028
Xu Yangang, Zhu Haitao, Liu Zhiguo. Path integration method for the stochastic vibro-impact system under the non-smooth transformation. Chinese Journal of applied Mechanics, 2021, 38(04): 1358-1365 (in Chinese)) doi: 10.11776/cjam.38.04.C028
|
[38] |
Zhang YH, Li YY, Kennedy D. An uncertain computational model for random vibration analysis of subsea pipelines subjected to spatially varying ground motions. Engineering Structures, 2019, 183: 550-561 doi: 10.1016/j.engstruct.2019.01.031
|
1. |
邢浩然,何毅翔,代胡亮,王琳. 基于绝对节点坐标法的复杂构型输流管道简支支承设计研究. 力学学报. 2024(02): 482-493 .
![]() | |
2. |
陈翰澍,陈国海,杨迪雄,傅卓佳. 基于直接概率积分法的水下航行器随机动力响应高效分析. 力学学报. 2024(06): 1796-1806 .
![]() | |
3. |
乔逸飞,瞿叶高,高鹏林,彭志科. 含摩擦界面复合材料输流管道非线性振动分析. 力学学报. 2024(11): 3312-3323 .
![]() | |
4. |
景康康. 噪声激励下恢复系数和噪声强度对碰撞系统的影响. 自动化与仪表. 2024(12): 7-11+17 .
![]() | |
5. |
王德莉,杨雯,韦玮,裴海清,徐伟. 带随机载荷振荡浮子式波能转换结构的参数优化设计与功率响应分析. 应用数学和力学. 2024(12): 1515-1529 .
![]() | |
6. |
田瑞,常亮,韩涛,聂小华. 输液直管道流-固耦合振动响应计算方法与应用. 应用数学和力学. 2024(12): 1494-1505 .
![]() |