Citation: | Xu Xiaoyang, Zhao Yuting, Li Jiayu, Yu Peng. Simulations of non-isothermal viscoelastic complex flows by improved SPH method. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(5): 1099-1112. DOI: 10.6052/0459-1879-22-602 |
[1] |
Peters GWM, Baaijens FPT. Modelling of non-isothermal viscoelastic flows. Journal of Non-Newtonian Fluid Mechanics, 1997, 68(2-3): 205-224 doi: 10.1016/S0377-0257(96)01511-X
|
[2] |
Li Q, Qu F. A level set based immersed boundary method for simulation of non-isothermal viscoelastic melt filling process. Chinese Journal of Chemical Engineering, 2021, 32: 119-133 doi: 10.1016/j.cjche.2020.09.057
|
[3] |
Fernandes C. A fully implicit log-conformation tensor coupled algorithm for the solution of incompressible non-isothermal viscoelastic flows. Polymers, 2022, 14(19): 4099 doi: 10.3390/polym14194099
|
[4] |
Moreno L, Codina R, Baiges J. Numerical simulation of non-isothermal viscoelastic fluid flows using a VMS stabilized finite element formulation. Journal of Non-Newtonian Fluid Mechanics, 2021, 296: 104640 doi: 10.1016/j.jnnfm.2021.104640
|
[5] |
Gingold RA, Monaghan JJ. Smoothed particle hydrodynamics: theory and application to non-spherical stars. Monthly Notices of the Royal Astronomical Society, 1977, 181(3): 375-389 doi: 10.1093/mnras/181.3.375
|
[6] |
Lucy LB. A numerical approach to the testing of the fission hypothesis. The Astronomical Journal, 1977, 82: 1013-1024 doi: 10.1086/112164
|
[7] |
王璐, 徐绯, 杨扬. 完全拉格朗日 SPH 在冲击问题中的改进和应用. 力学学报, 2022, 54(12): 3297-3309 (Wang Lu, Xu Fei, Yang Yang. Improvement of the total Lagrangian SPH and its application in impact problems. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(12): 3297-3309 (in Chinese)
|
[8] |
Liu MB, Zhang ZL, Feng DL. A density-adaptive SPH method with kernel gradient correction for modeling explosive welding. Computational Mechanics, 2017, 60(3): 513-529 doi: 10.1007/s00466-017-1420-5
|
[9] |
王平平, 张阿漫, 彭玉祥等. 近场水下爆炸瞬态强非线性流固耦合无网格数值模拟研究. 力学学报, 2022, 54(8): 2194-2209 (Wang Pingping, Zhang Aman, Peng Yuxiang, et al. Numerical simulation of transient strongly-nonlinear fluid-structure interaction in near-field underwater explosion based on meshless method. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(8): 2194-2209 (in Chinese)
|
[10] |
姚学昊, 陈丁, 武立伟等. 流固耦合破坏分析的多分辨率 PD-SPH 方法. 力学学报, 2022, 54(12): 3333-3343 (Yao Xuehao, Chen Ding, Wu Liwei, et al. A multi-resolution PD-SPH coupling approach for structural failure under fluid-structure interaction. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(12): 3333-3343 (in Chinese)
|
[11] |
He F, Zhang H, Huang C, et al. A stable SPH model with large CFL numbers for multi-phase flows with large density ratios. Journal of Computational Physics, 2022, 453: 110944 doi: 10.1016/j.jcp.2022.110944
|
[12] |
Liu MB, Liu GR. Restoring particle consistency in smoothed particle hydrodynamics. Applied Numerical Mathematics, 2006, 56(1): 19-36 doi: 10.1016/j.apnum.2005.02.012
|
[13] |
Xue B, Wang SP, Peng YX, et al. A novel coupled Riemann SPH–RKPM model for the simulation of weakly compressible fluid–structure interaction problems. Ocean Engineering, 2022, 266: 112447 doi: 10.1016/j.oceaneng.2022.112447
|
[14] |
Ng KC, Alexiadis A, Ng YL. An improved particle method for simulating fluid-structure interactions: The multi-resolution SPH-VCPM approach. Ocean Engineering, 2022, 247: 110779 doi: 10.1016/j.oceaneng.2022.110779
|
[15] |
Monaghan JJ, Kajtar JB. SPH particle boundary forces for arbitrary boundaries. Computer Physics Communications, 2009, 180(10): 1811-1820 doi: 10.1016/j.cpc.2009.05.008
|
[16] |
Morris JP, Fox PJ, Zhu Y. Modeling low Reynolds number incompressible flows using SPH. Journal of Computational Physics, 1997, 136(1): 214-226 doi: 10.1006/jcph.1997.5776
|
[17] |
Liu MB, Shao JR, Chang JZ. On the treatment of solid boundary in smoothed particle hydrodynamics. Science China Technological Sciences, 2012, 55(1): 244-254 doi: 10.1007/s11431-011-4663-y
|
[18] |
Yildiz M, Rook RA, Suleman A. SPH with the multiple boundary tangent method. International Journal for Numerical Methods in Engineering, 2009, 77(10): 1416-1438 doi: 10.1002/nme.2458
|
[19] |
Chen C, Zhang AM, Chen JQ, et al. SPH simulations of water entry problems using an improved boundary treatment. Ocean Engineering, 2021, 238: 109679 doi: 10.1016/j.oceaneng.2021.109679
|
[20] |
Yang X, Liu M, Peng S. Smoothed particle hydrodynamics modeling of viscous liquid drop without tensile instability. Computers & Fluids, 2014, 92: 199-208
|
[21] |
Sun PN, Colagrossi A, Marrone S, et al. Multi-resolution Delta-plus-SPH with tensile instability control: Towards high Reynolds number flows. Computer Physics Communications, 2018, 224: 63-80 doi: 10.1016/j.cpc.2017.11.016
|
[22] |
Chalk CM, Pastor M, Peakall J, et al. Stress-Particle smoothed particle hydrodynamics: An application to the failure and post-failure behaviour of slopes. Computer Methods in Applied Mechanics and Engineering, 2020, 366: 113034 doi: 10.1016/j.cma.2020.113034
|
[23] |
Lyu HG, Sun PN. Further enhancement of the particle shifting technique: Towards better volume conservation and particle distribution in SPH simulations of violent free-surface flows. Applied Mathematical Modelling, 2022, 101: 214-238 doi: 10.1016/j.apm.2021.08.014
|
[24] |
Rafiee A, Manzari MT, Hosseini M. An incompressible SPH method for simulation of unsteady viscoelastic free-surface flows. International Journal of Non-Linear Mechanics, 2007, 42(10): 1210-1223 doi: 10.1016/j.ijnonlinmec.2007.09.006
|
[25] |
杨波, 欧阳洁, 蒋涛等. PTT 黏弹性流体的光滑粒子动力学方法模拟. 力学学报, 2011, 43(4): 667-673 (Yang Bo, Ouyang Jie, Jiang Tao, et al. Numerical simulation of the viscoelastic flows for PTT model by the SPH method. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(4): 667-673 (in Chinese)
|
[26] |
Xu X, Deng XL. An improved weakly compressible SPH method for simulating free surface flows of viscous and viscoelastic fluids. Computer Physics Communications, 2016, 201: 43-62 doi: 10.1016/j.cpc.2015.12.016
|
[27] |
King JRC, Lind SJ. High weissenberg number simulations with incompressible smoothed particle hydrodynamics and the log-conformation formulation. Journal of Non-Newtonian Fluid Mechanics, 2021, 293: 104556 doi: 10.1016/j.jnnfm.2021.104556
|
[28] |
Duque-Daza C, Alexiadis A. A simplified framework for modelling viscoelastic fluids in discrete multiphysics. Chem Engineering, 2021, 5(3): 61
|
[29] |
Vahabi M, Hadavandmirzaei H, Kamkari B, et al. Interaction of a pair of in-line bubbles ascending in an Oldroyd-B liquid: A numerical study. European Journal of Mechanics-B/Fluids, 2021, 85: 413-429 doi: 10.1016/j.euromechflu.2020.11.004
|
[30] |
Moinfar Z, Vahabi S, Vahabi M. Numerical simulation of drop deformation under simple shear flow of Giesekus fluids by SPH. International Journal of Numerical Methods for Heat & Fluid Flow, 2023, 33(1): 263-281
|
[31] |
Meburger S, Niethammer M, Bothe D, et al. Numerical simulation of non-isothermal viscoelastic flows at high weissenberg numbers using a finite volume method on general unstructured meshes. Journal of Non-Newtonian Fluid Mechanics, 2021, 287: 104451 doi: 10.1016/j.jnnfm.2020.104451
|
[32] |
Verbeeten WMH, Peters GWM, Baaijens FPT. Differential constitutive equations for polymer melts: The extended Pom–Pom model. Journal of Rheology, 2001, 45(4): 823-843 doi: 10.1122/1.1380426
|
[33] |
Tanner RI. Engineering Rheology. OUP Oxford, 2000
|
[34] |
O'connor J, Domínguez JM, Rogers BD, et al. Eulerian incompressible smoothed particle hydrodynamics on multiple GPUs. Computer Physics Communications, 2022, 273: 108263 doi: 10.1016/j.cpc.2021.108263
|
[35] |
Liu GR, Liu MB. Smoothed Particle Hydrodynamics: A Meshfree Particle Method. Singapore: World Scientific, 2003
|
[36] |
Shao S, Lo EYM. Incompressible SPH method for simulating newtonian and non-newtonian flows with a free surface. Advances in Water Resources, 2003, 26(7): 787-800 doi: 10.1016/S0309-1708(03)00030-7
|
[37] |
Bonet J, Lok TSL. Variational and momentum preservation aspects of smooth particle hydrodynamic formulations. Computer Methods in Applied Mechanics and Engineering, 1999, 180(1-2): 97-115 doi: 10.1016/S0045-7825(99)00051-1
|
[38] |
Lind SJ, Xu R, Stansby PK, et al. Incompressible smoothed particle hydrodynamics for free-surface flows: A generalised diffusion-based algorithm for stability and validations for impulsive flows and propagating waves. Journal of Computational Physics, 2012, 231(4): 1499-1523 doi: 10.1016/j.jcp.2011.10.027
|
[39] |
Wang PP, Meng ZF, Zhang AM, et al. Improved particle shifting technology and optimized free-surface detection method for free-surface flows in smoothed particle hydrodynamics. Computer Methods in Applied Mechanics and Engineering, 2019, 357: 112580 doi: 10.1016/j.cma.2019.112580
|
[40] |
Yang L, Rakhsha M, Hu W, et al. A consistent multiphase flow model with a generalized particle shifting scheme resolved via incompressible SPH. Journal of Computational Physics, 2022, 458: 111079 doi: 10.1016/j.jcp.2022.111079
|
[41] |
Popinet S. An accurate adaptive solver for surface-tension-driven interfacial flows. Journal of Computational Physics, 2009, 228(16): 5838-5866 doi: 10.1016/j.jcp.2009.04.042
|