Citation: | Wang Changtao, Dai Honghua, Zhang Zhe, Wang Xuechuan, Yue Xiaokui. Parallel accelerated local variational iteration method and its application in orbit computation. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(4): 991-1003. DOI: 10.6052/0459-1879-22-592 |
[1] |
李鑫冉, 赵海斌. 近地小行星极短弧定轨的进化算法研究. 力学学报, 2021, 53(3): 902-911 (Li Xinran, Zhao Haibin. Study on evolutionary algorithms for initial orbit determination of near-earth asteroids with too-short-arc. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(3): 902-911 (in Chinese)
|
[2] |
夏存言, 张刚, 耿云海. 共面单脉冲拦截多目标问题. 航空学报, 2022, 43(3): 352-362 (Xia Cunyan, Zhang Gang, Geng Yunhai. Coplanar multi-target interception with a single impulse. Acta Aeronautica et Astronautica Sinica, 2022, 43(3): 352-362 (in Chinese)
|
[3] |
杜向南, 杨震. 航天器单脉冲机动可达域求解算法. 力学学报, 2020, 52(6): 1621-1631 (Du Xiangnan, Yang Zhen. An algorithm for solving spacecraft reachable domain with single-impulse maneuvering. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1621-1631 (in Chinese)
|
[4] |
汪中生, 孟占峰, 高珊等. 嫦娥五号月球轨道交会对接远程导引轨道设计与飞行实践. 宇航学报, 2021, 42(8): 939-952
Wang Zhongsheng, Meng Zhanfeng, Gao Shan, et al. Design of lunar or-bit rendezvous guidance strategy for Chang'e-5. Acta Aeronautica et Astronautica Sinica, 2021, 42(8): 939-952 (in Chinese))
|
[5] |
李培佳, 黄勇, 樊敏等. 嫦娥五号探测器交会对接段定轨精度研究. 中国科学: 物理学 力学 天文学, 2021, 51(11): 66-77 (Li Peijia, Huang Yong, Fan Min, et al. Research on the orbit determination accuracy of chang'e-5 detector in the rendezvous and docking section. Scientia Sinica:Physica,Mechanica &Astronomica, 2021, 51(11): 66-77 (in Chinese)
|
[6] |
李明儒, 徐聪, 齐征等. 火星大气电离层穿刺探测飞行动力学与轨迹优化. 哈尔滨工程大学学报, 2022, 43(5): 630-638 (Ling Mingru, Xu Cong, Qi Zheng, et al. Flight dynamics and trajectory optimization for ionospheric puncture exploration of Mars. Journal of Harbin Engineering University, 2022, 43(5): 630-638 (in Chinese)
|
[7] |
杨彬, 李爽, 刘旭等. 高精度火星大气制动轨迹智能高效优化方法. 中国科学:技术科学, 2020, 50(9): 1185-1199 (Yang Bin, Li Shuang, Liu Xu, et al. Intelligent and efficient optimization method for high-precision mars atmospheric braking trajectory. Scientia Sinica. Technologica, 2020, 50(9): 1185-1199 (in Chinese) doi: 10.1360/SST-2020-0245
|
[8] |
高振良, 孙小凡, 刘育强等. 航天器在轨延寿服务发展现状与展望. 航天器工程, 2022, 31(4): 98-107 (Gao Zhengliang, Sun Xiaofan, Liu Yuqiang, et al. Development and prospect of space craft on-orbit life extension servicing. Spacecraft Engineering, 2022, 31(4): 98-107 (in Chinese)
|
[9] |
楼良盛, 缪剑, 陈筠力等. 卫星编队InSAR系统设计系列关键技术. 测绘学报, 2022, 51(7): 1372-1385 (Lou Liangshen, Miu Jian, Chen Junli, et al. Key issues of InSAR system designment based on satellite formation. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1372-1385 (in Chinese)
|
[10] |
陈文斌, 程晋, 吴新明等. 微分方程数值解. 上海: 复旦大学出版社, 2014: 1-294
Chen Wenbin, Cheng Jin, Wu Xinming, et al. Numerical Solutions of Differential Equations. Shanghai: Fudan University Press, 2014: 1-294 (in Chinese))
|
[11] |
Clenshaw CW, Norton HJ. The solution of nonlinear ordinary differential equations in Chebyshev series. The Computer Journal, 1963, 6(1): 88-92 doi: 10.1093/comjnl/6.1.88
|
[12] |
Fukushima T. Picard iteration method, Chebyshev polynomial approximation, and global numerical integration of dynamical motions. The Astronomical Journal, 1997, 113(5): 1909-1914
|
[13] |
Bai XL. Modified Chebyshev-Picard iteration methods for solution of initial value and boundary value problems. [PhD Thesis]. College Station: Texas A&M University, 2010: 3-96
|
[14] |
Bai XL, Junkins JL. Modified Chebyshev-Picard iteration methods for orbit propagation. The Journal of the Astronautical Science, 2011, 58(4): 583-613 doi: 10.1007/BF03321533
|
[15] |
Bai XL, Junkins JL. Modified Chebyshev-Picard iteration methods for solution of boundary value problems. The Journal of the Astronautical Sciences, 2011, 58(4): 615-642 doi: 10.1007/BF03321534
|
[16] |
Woollands RM, Junkins JL. Nonlinear differential equation solvers via adaptive Picard-Chebyshev iteration: applications in astrodynamics. Journal of Guidance, Control, and Dynamics, 2019, 42(3): 1-16
|
[17] |
Wang XC, Yue XK, Dai HH, et al. Feedback-accelerated Picard iteration for orbit propagation and lambert’s problem. Journal of Guidance, Control, and Dynamics, 2017, 40(10): 2442-2451 doi: 10.2514/1.G002638
|
[18] |
Wang Y, Ni G, Liu Y. Multistep Newton–Picard method for nonlinear differential equations. Journal of Guidance, Control, and Dynamics, 2020, 43(11): 2148-2155 doi: 10.2514/1.G005124
|
[19] |
Woolands RM, Ahmad BY, Junkins JL. New solutions for the perturbed lambert problem using regularization and Picard iteration. Journal of Guidance, Control, and Dynamics, 2015, 38(9): 1548-1562 doi: 10.2514/1.G001028
|
[20] |
Swenson T, Woollands RM, Junkins JL, et al. Application of modified Chebyshev Picard iteration to differential correction for improved robustness and computation time. Journal of Astronaut Science, 2017, 64(3): 267-284 doi: 10.1007/s40295-016-0110-4
|
[21] |
Woollands RM, Read JL, Probe AB, et al. Multiple revolution solutions for the perturbed Lambert problem using the method of particular solutions and Picard iteration. Journal of Astronaut Science, 2017, 64(4): 361-378 doi: 10.1007/s40295-017-0116-6
|
[22] |
Woollands RM, Tahert E, Junkins JL. Efficient computation of optimal low thrust gravity perturbed orbit transfers. Journal of Astronaut Science, 2020, 67(2): 458-484 doi: 10.1007/s40295-019-00152-9
|
[23] |
Atallah AM, Woollands RM, Elgohary TA, et al. Accuracy and efficiency comparison of six numerical integrators for propagating perturbed orbits. Journal of Astronaut Science, 2020, 67(2): 511-538 doi: 10.1007/s40295-019-00167-2
|
[24] |
冯浩阳, 岳晓奎, 汪雪川. 大范围收敛的摄动Lambert问题新型解法: 拟线性化-局部变分迭代法. 航空学报, 2021, 42(11): 524-699 (Feng Haoyang, Yue Xiaokui, Wang Xuechuan. A novel quasi linearization local variational iteration method with large convergence domain for solving perturbed Lambert’s problem. Acta Aeronautica et Astronautica Sinica, 2021, 42(11): 524-699 (in Chinese)
|
[25] |
Feng H, Yue X, Wang X, et al. Decoupling and quasi-linearization methods for boundary value problems in relative orbital mechanics. Nonlinear Dynamics, 2023, 111: 199-215
|
[26] |
Atallah AM, Younes AB. Parallel evaluation of Chebyshev approximations: Applications in astrodynamics. The Journal of the Astronautical Sciences, 2022, 69(3): 692-717 doi: 10.1007/s40295-022-00302-6
|
[27] |
Dai HH, Yue XK, Liu CS. A multiple scale time domain collocation method for solving non-linear dynamical system. International Journal of Nonlinear Mechanics, 2014, 67: 342-351 doi: 10.1016/j.ijnonlinmec.2014.10.001
|
[28] |
He J. Variational iteration method—a kind of non-linear analytical technique: some examples. International Journal of Non-linear Mechanics, 1999, 34(4): 699-708 doi: 10.1016/S0020-7462(98)00048-1
|
[29] |
Atallah AM, Woollands RM, Atallah BY. Tuning orthogonal polynomial degree and segment interval length to achieve prescribed precision approximation of irregular functions//Space Flight Mechanics Meeting, Reston, USA, 2018
|
[30] |
Darby CL, Hager WW, Rao AV. An hp-adaptive pseudospectral method for solving optimal control problems. Optimal Control Applications and Methods, 2011, 32(4): 476-502 doi: 10.1002/oca.957
|
[31] |
Parerson MA, Hager WW, Rao AV. A ph mesh refinement method for optimal control. Optimal Control Applications and Methods, 2015, 36(4): 398-421 doi: 10.1002/oca.2114
|
[32] |
Wang XC, Elgohary TA, Atluri S. An adaptive local variational iteration method for orbit propagation and strongly nonlinear dynamical systems//AIAA Scitech 2020 Forum, Orlando, USA, 2020
|
[33] |
张哲, 代洪华, 冯浩阳等. 初值约束与两点边值约束轨道动力学方程的快速数值计算方法. 力学学报, 2022, 54(2): 503-516 (Zhang Zhe, Dai Honghua, Feng Haoyang, et al. Efficient numerical method for orbit dynamic functions with initial value and two-point boundary-value constraints. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(2): 503-516 (in Chinese)
|
[34] |
汪雪川. 非线性系统的反馈 Picard 迭代-配点方法及应用. [博士论文]. 西安: 西北工业大学, 2017: 67-72
Wang Xuechuan. Feedback Picard iteration-collocation method and the applications on astronautical engineering. [PhD Thesis]. Xi’an: Northwestern Polytechnical University, 2017: 67-72 (in Chinese))
|
[35] |
李志刚, 李军予, 李超等. 小卫星星务技术发展现状及展望. 航天器工程, 2021, 30(6): 128-134 (Li Zhigang, Li Junyu, Li Chao, et al. Review and prospect of small satellite onboard housekeeping system. Spacecraft Engineering, 2021, 30(6): 128-134 (in Chinese)
|
[36] |
陆士强, 梁赫光, 刘东洋. 国产化星载计算机技术现状和发展思考. 移动信息, 2018, 40(6): 126-129 (Lu Shiqiang, Liang Haoguang, Liu Dongyang. Thoughts on the status quo and development of localized onboard computer technology. Mobile Information, 2018, 40(6): 126-129 (in Chinese)
|
[1] | Bao Yun, Xi Lingchu. PARALLEL DIRECT METHOD OF LES FOR TURBULENT WIND FIELD WITH HIGH REYNOLDS NUMBER[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(3): 656-662. DOI: 10.6052/0459-1879-20-052 |
[2] | Chen Shaolin, Cheng Shulin, Ke Xiaofei. A UNIFIED COMPUTATIONAL FRAMEWORK FOR FLUID-SOLID COUPLING IN MARINE EARTHQUAKE ENGINEERING: IRREGULAR INTERFACE CASE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(5): 1517-1529. DOI: 10.6052/0459-1879-19-156 |
[3] | Shaolin Chen, Xiaofei Ke, Hongxiang Zhang. A UNIFIED COMPUTATIONAL FRAMEWORK FOR FLUID-SOLID COUPLING IN MARINE EARTHQUAKE ENGINEERING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 594-606. DOI: 10.6052/0459-1879-18-333 |
[4] | Ma Tianbao, Ren Huilan, Li Jian, Ning Jianguo. LARGE SCALE HIGH PRECISION COMPUTATION FOR EXPLOSION AND IMPACT PROBLEMS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3): 599-608. DOI: 10.6052/0459-1879-15-382 |
[5] | Miao Xinqiang, Jin Xianlong, Ding Junhong. A HIERARCHICAL PARALLEL COMPUTING APPROACH FOR STRUCTURAL STATIC FINITE ELEMENT ANALYSIS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(4): 611-618. DOI: 10.6052/0459-1879-13-335 |
[6] | Lu Hongqiang Zhu Guoxiang Song Jiangyong Wu Yizhao. High-order discontinuous galerkin solution of linearized Euler equations[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(3): 621-624. DOI: 10.6052/0459-1879-2011-3-lxxb2010-077 |
[7] | Yang Shunhua. Implementation of reduced chemical kinetics for kerosene combustion and in situ adaptive tabulation in parallel computations of scramjet[J]. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(6): 1090-1097. DOI: 10.6052/0459-1879-2010-6-lxxb2009-490 |
[8] | Fujun Wang, Liping Wang, Jiangang Cheng, Zhenhan Yao. A contact algorithm for parallel computation of FEM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(3): 422-427. DOI: 10.6052/0459-1879-2007-3-2006-407 |
[9] | REAL TIME NEUROCOMPUTING THEORY AND NUMERICAL SIMULATION ON ELASTIC MECHANICS 1)[J]. Chinese Journal of Theoretical and Applied Mechanics, 1998, 30(3): 348-353. DOI: 10.6052/0459-1879-1998-3-1995-136 |
[10] | PARALLEL COMPUTATIONAL SCHEME FOR THE MANIPULATOR FORWARD DYNAMICS BASED ON THE NON-RECURSIVE FORMULATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 1997, 29(3): 369-372. DOI: 10.6052/0459-1879-1997-3-1995-240 |
1. |
代洪华 ,王其偲 ,严子朴 ,岳晓奎 . 重构谐波平衡法及其求解复杂非线性问题应用. 力学学报. 2024(01): 212-224 .
![]() | |
2. |
王义宇,罗宇航,徐田来,包为民,袁帅,张泽旭,李宸硕,胡志杰. 一种离散轨道数据约束下的地月三体轨道脉冲转移算法. 深空探测学报(中英文). 2023(05): 481-493 .
![]() | |
3. |
赵弘骞,左宸昊,岳晓奎,肖余之,陈欢龙,代洪华. 失效航天器非接触式消旋技术发展综述. 宇航学报. 2023(12): 1797-1809 .
![]() |