Citation: | Li Jianyu, Yang Kun, Wang Bo, Zhang Lili. A maximum entropy approach for uncertainty quantification of initial geometric imperfections of thin-walled cylindrical shells with limited data. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(4): 1028-1038. DOI: 10.6052/0459-1879-22-556 |
[1] |
Wagner HNR, Hühne C, Elishakoff I. Probabilistic and deterministic lower-bound design benchmarks for cylindrical shells under axial compression. Thin-Walled Structures, 2020, 146: 179-200
|
[2] |
王俊奎, 仝立勇. 关于圆筒壳稳定性中的初始缺陷. 力学进展, 1988, 18(2): 215-221 (Wang Junkui, Tong Liyong. On initial imperfections in stability of circular cylindrical shells. Advances in Mechanics, 1988, 18(2): 215-221 (in Chinese)
|
[3] |
陈志平, 焦鹏, 马赫等. 基于初始缺陷敏感性的轴压薄壁圆柱壳屈曲分析研究进展. 机械工程学报, 2021, 57(22): 114-129 (Chen Zhiping, Jiao Peng, Ma He, et al. Advances in buckling analysis of axial compression loaded thin-walled cylindrical shells based on Iinitial imperfection sensitivity. Journal of Mechanical Engineering, 2021, 57(22): 114-129 (in Chinese) doi: 10.3901/JME.2021.22.114
|
[4] |
乔丕忠, 王艳丽, 陆林军. 圆柱壳稳定性问题的研究进展. 力学季刊, 2018, 39(2): 223-236 (Qiao Pizhong, Wang Yanli, Lu Linjun. Advances in stability study of cylindrical shells. Chinese Quarterly of Mechanics, 2018, 39(2): 223-236 (in Chinese) doi: 10.15959/j.cnki.0254-0053.2018.02.001
|
[5] |
王博, 郝鹏, 田阔. 加筋薄壳结构分析与优化设计研究进展. 计算力学学报, 2019, 36(1): 1-12 (Wang Bo, Hao Peng, Tian Kuo. Recent advances in structural analysis and optimization of stiffened shells. Chinese Journal of Computational Mechanics, 2019, 36(1): 1-12 (in Chinese) doi: 10.7511/jslx20180615002
|
[6] |
Anonymous. Eurocode 3: Design of steel structures. European Committee for Standardisation, ENV, 1993-1-6
|
[7] |
Hühne C, Rolfe R, Breitbach E, et al. Robust design of composite cylindrical shells under axial compression-simulation and validation. Thin-Walled Structure, 2008, 46: 947-962 doi: 10.1016/j.tws.2008.01.043
|
[8] |
Wang B, Hao P, Li G, et al. Determination of realistic worst imperfection for cylindrical shells using surrogate model. Structural and Multidisciplinary Optimization, 2013, 48: 777-794 doi: 10.1007/s00158-013-0922-9
|
[9] |
Arbocz J, Starnes Jr J. Future directions and challenges in shell stability analysis. Thin-Walled Structure, 2002, 40: 729-754 doi: 10.1016/S0263-8231(02)00024-1
|
[10] |
Bolotin V, Akademii Nauk SSSR. Statistical methods in the non-linear theory of elastic shells. Otdelenie Tekhnicheskykh Nauk, 1958, 3: 33-41 (in Russian) (English Translation: NASA TTF-85, 1962: 1-16)
|
[11] |
Budiansky B, Hutchinson JW. A survey of some buckling problems. AIAA Journal, 1966, 4(9): 1505-1510 doi: 10.2514/3.3727
|
[12] |
Zhang DL, Chen ZP, Li Y, et al. Lower-bound axial buckling load prediction for isotropic cylindrical shells using probabilistic random perturbation load approach. Thin-Walled Structures, 2020, 155: 106925
|
[13] |
Elishakoff I. Resolution of the 20th Century Conundrum in Elastic Stability. World Scientific Publishing Co. Pte. Ltd., 2014
|
[14] |
Arbocz J, Abramovich H. The initial imperfection databank at the Delft University of Technology, Part 1. Technical Report LR-290, Department of Aerospace Engineering, Delft University of Technology, 1979
|
[15] |
Benedikt K, Raimund R, Christian H, et al. Probabilistic design of axially compressed composite cylinders with geometric and loading imperfections. International Journal Of Structural Stability And Dynamics, 2010, 10: 623-644 doi: 10.1142/S0219455410003658
|
[16] |
Wang B, Du KF, Hao P, et al. Experimental validation of cylindrical shells under axial compression for improved knockdown factors. International Journal of Solids and Structures, 2019, 164: 37-51 doi: 10.1016/j.ijsolstr.2019.01.001
|
[17] |
Arbocz J, Hol JMAM. Collapse of axially compressed cylindrical shells with random imperfections. Thin-walled Structure, 1995, 23: 131-158 doi: 10.1016/0263-8231(95)00009-3
|
[18] |
Schenk CA, Schuëller GI. Buckling analysis of cylindrical shells with random geometrical imperfections. International Journal of Non-Linear Mechanics, 2003, 38: 1119-1132 doi: 10.1016/S0020-7462(02)00057-4
|
[19] |
Craig KJ, Roux WJ. On the investigation of shell buckling due to random geometrical imperfections implemented using Karhunen–Loève expansions. International Journal for Numerical Methods in Engineering, 2008, 73: 1715-1726 doi: 10.1002/nme.2141
|
[20] |
Benedikt K, Milena M, Raimund R. Sample size dependent probabilistic design of axially compressed cylindrical shells. Thin-Walled Structure, 2014, 74: 222-231 doi: 10.1016/j.tws.2013.10.003
|
[21] |
Yang H, Feng SJ, Hao P, et al. Uncertainty quantification for initial geometric imperfections of cylindrical shells: A novel bi-stage random field parameter estimation method. Aerospace Science and Technology, 2022, 124: 107554 doi: 10.1016/j.ast.2022.107554
|
[22] |
Gray A, Wimbush A, De Angelis M, et al. From inference to design: A comprehensive framework for uncertainty quantification in engineering with limited information. Mechanical Systems and Signal Processing, 2022, 165: 108210 doi: 10.1016/j.ymssp.2021.108210
|
[23] |
Fina M, Weber P, Wagner W. Polymorphic uncertainty modeling for the simulation of geometric imperfections in probabilistic design of cylindrical shells. Structural Safety, 2020, 82: 101894
|
[24] |
Feng SJ, Duan YH, Yao CY, et al. A Gaussian process-driven worst realistic imperfection method for cylindrical shells by limited data. Thin-Walled Structure, 2022, 181: 110130 doi: 10.1016/j.tws.2022.110130
|
[25] |
李建宇, 魏凯杰. 考虑周长约束的圆柱薄壳初始几何缺陷随机场建模方法. 计算力学学报, 2020, 37: 722-728 (Li Jianyu, Wei Kaijie. Modeling initial geometrical imperfections of thin cylindrical shells by random field with perimeter constraints. Chinese Journal of Computational Mechanics, 2020, 37: 722-728 (in Chinese) doi: 10.7511/jslx20200216001
|
[26] |
李建宇, 佘昌忠, 张丽丽. 薄壁圆筒壳初始几何缺陷不确定性量化的极大熵方法. 计算力学学报, 2022, 39: 443-449 (Li Jianyu, She Changzhong, Zhang Lili. A maximum entropy approach for uncertainty quantification of initial geometric imperfections of thin-walled cylindrical shell. Chinese Journal of Computational Mechanics, 2022, 39: 443-449 (in Chinese) doi: 10.7511/jslx20210209001
|
[27] |
Ghanem RG, Doostan A. On the construction and analysis of stochastic models: Characterization and propagation of the errors associated with limited data. Journal of Computational Physics, 2006, 217(1): 63-81 doi: 10.1016/j.jcp.2006.01.037
|
[28] |
Zhang RJ, Dai HZh. Stochastic analysis of structures under limited observations using kernel density estimation and arbitrary polynomial chaos expansion. Computer Methods in Applied Mechanics and Engineering Part A, 2023, 403: 115689 doi: 10.1016/j.cma.2022.115689
|
[29] |
李仲民. 基于不完整概率信息的随机场重构方法. [硕士论文]. 哈尔滨: 哈尔滨工业大学, 2021
Li Zhongmin. The recovery of random fields based on incomplete probabilistic information. [Master Thesis]. Harbin: Harbin Institute of Technology, 2021 (in Chinese)
|
[30] |
Soize C. Uncertainty Quantification: An Accelerated Course with Advanced Applications in Computational Engineering. Springer, 2017
|
[31] |
Murphy KP. Machine Learning: A Probabilistic Perspective. The MIT Press, 2012
|
[32] |
Mihara, Y, Kobayashi T, Fujii F, et al. Postbuckling analyses of elastic cylindrical shells under axial compression. Transactions of the Japan Society of Mechanical Engineers Series A, 2011, 77: 582-589
|
[1] | Qian Zhihao, Ding Chensen, Xu Lingchen, Guo Chaoyang, Yu Yue, Luo Cijin, Liu Moubin. A HIGHLY EFFICIENT AND ACCURATE SURROGATE MODEL FOR FLUID-STRUCTURE INTERACTION WITH LIMITED DATA[J]. Chinese Journal of Theoretical and Applied Mechanics, 2025, 57(4): 803-815. DOI: 10.6052/0459-1879-25-059 |
[2] | Li Tianyi, Buzzicotti Michele, Biferale Luca, Wan Minping, Chen Shiyi. RECONSTRUCTION OF TURBULENT DATA WITH GAPPY POD METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(10): 2703-2711. DOI: 10.6052/0459-1879-21-464 |
[3] | Li Zigang, Yan Wang, Kang Jiaqi, Jiang Jun, Hong Ling. DATA-DRIVEN GLOBAL DYNAMICS OF THE INDIAN OCEAN[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(9): 2595-2602. DOI: 10.6052/0459-1879-21-218 |
[4] | Cao Chong, Cheng Linsong, Zhang Xiangyang, Jia Pin, Shi Junjie. SEEPAGE PROXY MODEL AND PRODUCTION FORECAST METHOD BASED ON MULTIVARIATE AND SMALL SAMPLE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(8): 2345-2354. DOI: 10.6052/0459-1879-21-155 |
[5] | Yin Kaihong, Wu Zheng, Guo Mingmin. STUDY ON THE ACCELERATION OF TRAFFIC FLOW BASED ON THE EMPIRICAL DATA[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(2): 242-251. DOI: 10.6052/0459-1879-14-213 |
[6] | Zhang Hongping Sun Chengwei Li Mu Zhao Jianheng. Backward integration method in data processing of quasi-isentropic compression experiment[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(1): 105-111. DOI: 10.6052/0459-1879-2011-1-lxxb2010-053 |
[7] | QUANTITATIVE ANALYSIS OF APPARENT FATIGUE LIMITS OF NOTCHED SPECIMENS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2004, 36(1). DOI: 10.6052/0459-1879-2004-1-2003-068 |
[8] | 有孔隙的耦合热弹性体动力学的一些基本原理[J]. Chinese Journal of Theoretical and Applied Mechanics, 1996, 28(1): 55-65. DOI: 10.6052/0459-1879-1996-1-1995-302 |
[9] | A NEW LIMIT-LOAD FORMULA FOR THE LIGAMENT OF A SURFACE CRACK[J]. Chinese Journal of Theoretical and Applied Mechanics, 1995, 27(4): 489-494. DOI: 10.6052/0459-1879-1995-4-1995-458 |
[10] | A MATHEMATICAL PROGRAMMING ALGORITHM FOR LIMIT ANALYSIS[J]. Chinese Journal of Theoretical and Applied Mechanics, 1991, 23(4): 433-442. DOI: 10.6052/0459-1879-1991-4-1995-860 |
1. |
石玉红,傅鸿飞,徐卫秀,杨帆. 大直径薄壁结构强度变差系数研究现状与展望. 强度与环境. 2024(01): 1-12 .
![]() | |
2. |
张瑞景,戴鸿哲. 有限实验数据下工程结构概率建模及随机响应分析. 哈尔滨工程大学学报. 2024(04): 674-681 .
![]() | |
3. |
王绪成,李文凯,艾飞,刘志兵,张远涛. 基于数据驱动的大气压射频放电等离子体数值模拟研究. 力学学报. 2023(12): 2900-2912 .
![]() |