Citation: | Qu Yipeng, Sun Xiuting, Xu Jian. Bionic mechanism and large-deformation modeling of rigid-flexible coupling structure inspired by chicken neck. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(2): 445-461 doi: 10.6052/0459-1879-22-553 |
[1] |
李冰玉, 阚子云, 彭海军等. 基于张拉整体结构的连续型弯曲机械臂设计与研究. 机器人, 2020, 42(6): 686-696 (Li Bingyu, Kan Ziyun, Peng Haijun, et al. Design and research on a continuum manipulator based on tensegrity structure. Robot, 2020, 42(6): 686-696 (in Chinese)
|
[2] |
Sunspiral V, Agogino A, Atkinson D. Super ball bot - structures for planetary landing and exploration. NIAC Phase 2 Final Report, 2015
|
[3] |
郭冲冲, 武文华, 吴国东等. 海洋核动力平台定位系统多体动力学建模与分析. 力学学报, 2022, 54(5): 1443-1455 (Guo Chongchong, Wu Wenhua, Wu Guodong, et al. Multibody dynamical modeling and analysis of marine nuclear power platform positioning system. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(5): 1443-1455 (in Chinese)
|
[4] |
Han HS, Vladislav S, Tang LH, et al. Lightweight origami isolators with deployable mechanism and quasi-zero-stiffness property. Aerospace Science and Technology, 2022, 121: 107319 doi: 10.1016/j.ast.2021.107319
|
[5] |
刘昊, 瞿叶高, 孟光. 剪切流作用下层合梁非线性振动特性研究. 力学学报, 2022, 54(6): 1669-1679 (Liu Hao, Qu Yegao, Meng Guang. A numerical study on flapping dynamics of a composite laminated beam in shear flow. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(6): 1669-1679 (in Chinese)
|
[6] |
Chen Z, Liang XY, Wu TH, et al. Pneumatically actuated soft robotic arm for adaptable grasping. Acta Mechanica Solida Sinica, 2018, 31(5): 15
|
[7] |
袁婷婷, 任昆明, 方雨桥等. 考虑非线性本构的非刚性折纸结构动力学建模与分析. 力学学报, 2022, 54(9): 2552-2566 (Yuan Tingting, Ren Kunming, Fang Yuqiao, et al. Dynamic modeling and analysis for non-rigid origami structure considering nonlinear constitutive relation. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(9): 2552-2566 (in Chinese)
|
[8] |
Böhmer C, Prevoteau J, Duriez O, et al. Gulper, ripper and scrapper: anatomy of the neck in three species of vultures. Journal of Anatomy, 2020, 236(4): 701-723 doi: 10.1111/joa.13129
|
[9] |
崔亚琳, 徐鹏, 倪义坤等. 啄木鸟头颈部解剖结构分析. 中国科学(生命科学), 2018, 48(10): 1084-1092 (Cui Yalin, Xu Peng, Ni Yikun, et al. Analysis of the anatomical structure of woodpecker head and neck. Science in China (Series C)
|
[10] |
Terray L, Plateau O, Abourachid A, et al. Modularity of the neck in birds (aves). Evolutionary Biology, 2020, 47(2): 97-110 doi: 10.1007/s11692-020-09495-w
|
[11] |
Baumel JJ. Handbook of Avian Anatomy: Nomina Anatomica Avium, 2nd ed. Cambridge: Publications of Nuttall Ornithological Club, 1993
|
[12] |
Boumans MLLM, Krings M, Wagner H. Muscular arrangement and muscle attachment sites in the cervical region of the American barn owl (Tyto furcata pratincola). PLoS One, 2015, 10: e0134272 doi: 10.1371/journal.pone.0134272
|
[13] |
Zweers GA. Behavioural mechanisms of avian drinking. Netherlands Journal of Zoology, 1992, 42(1): 60-84
|
[14] |
Bout RG. Postures of the avian craniocervical column. Journal of Morphology, 1997, 231(3): 287-295 doi: 10.1002/(SICI)1097-4687(199703)231:3<287::AID-JMOR7>3.0.CO;2-8
|
[15] |
Heidweiller J, Leeuw AHJVD, Zweers GA. Cervical kinematics during drinking in developing chickens. Journal of Experimental Zoology, Part A: Ecological Genetics & Physiology, 2010, 262(2): 135-153
|
[16] |
Necker R. Head-bobbing of walking birds. Journal of Comparative Physiology A, 2007, 193(12): 1177 doi: 10.1007/s00359-007-0281-3
|
[17] |
Nyakatura JA, Andrada E. On vision in birds: coordination of head-bobbing and gait stabilises vertical head position in quail. Frontiers in Zoology, 2014, 11(1): 27 doi: 10.1186/1742-9994-11-27
|
[18] |
Furet M, Lettl M, Wenger P. Kinematic analysis of planar tensegrity 2-X manipulators//30th International Symposium on Advances in Robot Kinematics, 2018
|
[19] |
Furet M, Wenger P. Workspace and cuspidality analysis of a 2-X planar manipulator//4th IFToMM Symposium on Mechanism Design for Robotics, 2018
|
[20] |
Fasquelle B, Khanna P, Chevallereau C, et al. Identification and control of a 3-x cable-driven manipulator inspired from the bird's neck. Journal of Mechanisms and Robotics, 2021, 14(1): 1-25
|
[21] |
李召芹. 张拉整体仿生鸟颈特性分析与运动控制研究. [硕士论文]. 黑龙江: 哈尔滨工业大学, 2020
Li Zhaoqin. Research on characteristic analysis and motion control of bionic bird neck of Tensegrity. [Master Thesis]. Heilongjiang: Harbin Institute of Technology, 2020 (in Chinese)
|
[22] |
Wang YH, Li ZQ, He JF, et al. Inverse kinematics based on backbone curve for a hyper-redundant tensegrity bird-neck robotic mechanism. Journal of Physics: Conference Series, 2021, 1885(4): 042030 doi: 10.1088/1742-6596/1885/4/042030
|
[23] |
Li X, Kong WS, He JF. A task-space form-finding algorithm for tensegrity robots. IEEE Access, 2020, 8: 100578-100585 doi: 10.1109/ACCESS.2020.2995541
|
[24] |
Sun XT, Wang F, Xu J. A novel dynamic stabilization and vibration isolation structure inspired by the role of avian neck. International Journal of Mechanical Sciences, 2021, 193(1): 106166
|
[25] |
Deng TC, Wen GL, Ding H, et al. A bio-inspired isolator based on characteristics of quasi-zero stiffness and bird multi-layer neck. Mechanical Systems & Signal Processing, 2020, 145: 106967
|
[26] |
Yan G, Zou HX, Wang S, et al. Bio-inspired vibration isolation: methodology and design. Applied Mechanics Reviews, 2021, 73(2): 020801 doi: 10.1115/1.4049946
|
[27] |
Kambic RE, Biewener AA, Pierce SE. Experimental determination of three-dimensional cervical joint mobility in the avian neck. Frontiers in Zoology, 2017, 14(1): 37 doi: 10.1186/s12983-017-0223-z
|
[28] |
Guinard G, Marchand D. Modularity and complete natural homeoses in cervical vertebrae of extant and extinct penguins (aves: sphenisciformes). Evolutionary Biology, 2010, 37(4): 210-226 doi: 10.1007/s11692-010-9097-0
|
[29] |
Krings M, Nyakatura JA, Fischer MS, et al. The cervical spine of the american barn owl (tyto furcata pratincola): i. anatomy of the vertebrae and regionalization in their s-shaped arrangement. PLoS One, 2014, 9(3): e91653
|
[30] |
钱佳伟, 孙秀婷, 徐鉴等. 一类新型仿生起竖结构设计及其动力学分析. 力学学报, 2021, 53(7): 2023-2036 (Qian Jiawei, Sun Xiuting, Xu Jian, et al. Design and dynamic analysis of a novel bio-inspired erecting structure. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(7): 2023-2036 (in Chinese)
|
[31] |
张佳俊, 张舒, 徐鉴. 下肢康复外骨骼人机耦合动力学建模与控制. 动力学与控制学报, 2021, 19(4): 55-63
Zhang Jiajun, Zhang Shu, Xu Jian. Human-machine coupled dynamic modelling and control of lower limb exoskeleton for rehabilitation, Journal of Dynamics and Control, 2021, 19(4): 55-63 (in Chinese)
|
[32] |
Wang YH, Zhang XS, Li X, et al. Motion simulation of a tensegrity snake-like robot based on the serpenoid curve. Journal of Physics Conference Series, 2021, 1965(1): 012033 doi: 10.1088/1742-6596/1965/1/012033
|
[33] |
李维佳. 基于张拉整体结构的仿生腿式机器人设计方法研究. [硕士论文]. 吉林: 长春工业大学, 2022
Li Weijia. Research on the design method of bio-inspired legged robot based on the tensegrity structure. [Master Thesis]. Jilin: Changchun University of Technology, 2022 (in Chinese)
|
[34] |
Shabana AA. Flexible multibody dynamics: review of past and recent developments. Multibody System Dynamics, 1997, 1(2): 189-222 doi: 10.1023/A:1009773505418
|
[35] |
Tian Q, Zhang P, Luo K. Dynamics of soft mechanical systems actuated by dielectric elastomers. Mechanical Systems and Signal Processing, 2020, 151: 107392
|
[36] |
Cao YT, Cao DQ, He GQ, et al. Rigid-flexible coupled dynamics and pd-robust control design for the spacecraft with rotating solar panels. International Journal of Applied Mechanics, 2021, 13(10): 2150112 doi: 10.1142/S175882512150112X
|