EI、Scopus 收录
Volume 55 Issue 2
Feb.  2023
Turn off MathJax
Article Contents
Zhang Weipeng, Ren Jianxin, Guo Hang, Wang Zibin, Hu Jian. Impact of rudder geometry on the wake evolutions of propeller-rudder interaction. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(2): 318-329 doi: 10.6052/0459-1879-22-552
Citation: Zhang Weipeng, Ren Jianxin, Guo Hang, Wang Zibin, Hu Jian. Impact of rudder geometry on the wake evolutions of propeller-rudder interaction. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(2): 318-329 doi: 10.6052/0459-1879-22-552


doi: 10.6052/0459-1879-22-552
  • Received Date: 2022-11-22
  • Accepted Date: 2023-01-13
  • Available Online: 2023-01-15
  • Publish Date: 2023-02-18
  • The evolutions of propeller wake can be impacted by interaction between the propeller and rudder which results in turbulence enhancement in the propeller wake. The turbulence in the propeller wake worsens vibrations and noise on vessels. The intensive research aimed on the wake evolution in the propeller-rudder interaction brings sights on the control of propeller wake and relief of vibrations and noises. Hence, the rudders with different chord and profile are employed to investigate the impact of rudder geometry on the evolutions of propeller wake. Large eddy simulation method is used to simulate the turbulence in the flow field. The propeller vortices obtained with different rudder chords and profiles are compared in present study. The impact of trapezoidal rudder on the propeller wake evolution are studied based on the research aimed on the impact of rudder chords and profiles on the propeller wake. The distributions of turbulence kinetic energy in the interaction between the trapezoidal rudder and propeller are also researched in present study. Results show that both of rudder chord and rudder profile can impact the evolutions of propeller wake. Larger chord and thicker profile of the rudder enhance the span-wise displacement of propeller tip vortices. Thinner profile leads to more intense displacement of propeller hub vortex. The vortex trajectory and pressure fluctuations on the rudder surface indicate that trapezoidal rudder enhances the span-wise displacement occurring in anti-direction of rudder tapering. This enhancement takes asymmetry to the propeller wake around the rudder and in the downstream. The turbulences in the propeller wake can be related to the collisions between the propeller vortices and rudder, between the propeller vortices and rudder trail vortex, between the propeller tip vortices and hub vortex. The more intense span-wise displacement of propeller wake induced by trapezoidal rudder brings earlier enhancement on turbulence in the propeller wake.


  • loading
  • [1]
    Filippone A, Afgan I. Orthogonal blade-vortex interaction on a helicopter tail rotor. AIAA Journal, 2008, 46(6): 1476-1489 doi: 10.2514/1.32690
    Shafii S, Obermaier H, Linn R, et al. Visualization and analysis of vortex-turbine interactions in wind farms. IEEE Transactions on Visualization and Computer Graphics, 2013, 19(9): 1579-1591 doi: 10.1109/TVCG.2013.18
    Roger M, Schram C, Moreau S. On the vortex-airfoil interaction noise including span-end effects, with application to open-rotor aeroacoustics. Journal of Sound and Vibration, 2014, 333: 283-306 doi: 10.1016/j.jsv.2013.09.012
    Jiang Y, Mao ML, Deng XG, et al. Numerical investigation on body-wake flow interaction over rod-airfoil configuration. Journal of Fluid Mechanics, 2015, 779: 1-35 doi: 10.1017/jfm.2015.419
    Kingan MJ, Parry AB. Time-domain analysis of contra-rotating propeller noise: wake interaction with a downstream propeller blade. Journal of Fluid Mechanics, 2020, 901: A21
    Posa A, Broglia R, Balars E. The wake flow downstream of a propeller-rudder system. International Journal of Heat and Fluid Flow, 2021, 87: 108765 doi: 10.1016/j.ijheatfluidflow.2020.108765
    Ghassemi H, Ghadimi P. Computational hydrodynamic analysis of the propeller-rudder and the AZIPOD systems. Ocean Engineering, 2009, 35: 117-130
    Hu J, Zhang WP, Guo H, et al. Numerical simulation of propeller wake vortex–rudder interaction in oblique flows. Ships and Offshore Structures, 2021, 16(2): 144-155 doi: 10.1080/17445302.2020.1711630
    Zhang XT, Hong Y, Yang F, et al. Effect of rudder on propulsion performance and structural deformation of composite propellers. Ocean Engineering, 2019, 182: 318-328 doi: 10.1016/j.oceaneng.2019.04.075
    Hou LX, Wang C, Chang X, et al. Hydrodynamic performance analysis of propeller-rudder system with the rudder parameters changing. Journal of Marine Science and Application, 2013, 12: 406-412
    Guo H, Zou ZJ. A RANS-based study of the impact of rudder on the propeller characteristics for a twin-screw ship during maneuvers. Ocean Engineering, 2021, 239: 109848 doi: 10.1016/j.oceaneng.2021.109848
    Molland AF, Turnock SR. Wind tunnel investigation of the influence of propeller loading on ship rudder performance. No. 46 Ship Research Report of University of Southampton, 1991
    Molland AF, Turnock SR. Marine Rudders and Control Surfaces: Principles, Data, Design and Application. Oxford: Butterworth-Heinemann, 2007
    Baode CE, Phillips AB, Turnock ST. Influence of drift angle on the computation of hull-propeller-rudder interaction. Ocean Engineering, 2015, 103: 64-77 doi: 10.1016/j.oceaneng.2015.04.059
    Felli M, Camussi R, Di Felice F. Mechanisms of evolution of the propeller wake in the transition and far fields. Journal of Fluid Mechanics, 2011, 682: 5-53 doi: 10.1017/jfm.2011.150
    Di Mascio, A, Muscari, R, Dubbioso, G. On the wake dynamics of a propeller operating in drift. Journal of Fluid Mechanics, 2014, 754: 263-307
    Wang LZ, Guo CY, Su YM, et al. Numerical analysis of a propeller during heave motion in cavitating flow. Applied Ocean Research, 2017, 66: 131-145 doi: 10.1016/j.apor.2017.05.001
    Wang LZ, Guo CY, Xu P, et al. Analysis of the performance of an oscillating propeller in cavitating flow. Ocean Engineering, 2018, 164: 23-39 doi: 10.1016/j.oceaneng.2018.06.036
    Hu J, Wang YZ, Zhang WP, et al. Tip vortex prediction for contra-rotating propeller using large eddy simulation. Ocean Engineering, 2019, 194: 106410 doi: 10.1016/j.oceaneng.2019.106410
    Wang LZ, Wu TC, Gong J, et al. Numerical simulation of the wake instabilities of a propeller. Physics of Fluids, 2021, 33(12): 125125 doi: 10.1063/5.0070596
    王恋舟, 吴铁成, 郭春雨. 螺旋桨梢涡不稳定性机理与演化模型研究. 力学学报, 2021, 53(8): 2267-2278 (Wang Lianzhou, Wu Tiecheng, Guo Chunyu. Study on instability mechanism and evolution model of propeller tip vortices. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(8): 2267-2278 (in Chinese) doi: 10.6052/0459-1879-21-151
    Gong J, Ding JM, Wang LZ. Propeller-duct interaction on the wake dynamics of a ducted propeller. Physics of Fluids, 2021, 33(7): 074102 doi: 10.1063/5.0056383
    Muscari R, Dubbioso G, Di Mascio A. Analysis of the flow field around a rudder in the wake of a simplified marine propeller. Journal of Fluid Mechanics, 2017, 814: 547-569 doi: 10.1017/jfm.2017.43
    Wang LZ, Guo CY, Xu P. Analysis of the wake dynamics of a propeller operating before a rudder. Ocean Engineering, 2019, 188: 106250 doi: 10.1016/j.oceaneng.2019.106250
    Hu J, Zhang WP, Sun SL, et al. Numerical simulation of vortex–rudder interactions behind the propeller. Ocean Engineering, 2019, 190: 106446 doi: 10.1016/j.oceaneng.2019.106446
    Zhang WP, Chen CG, Wang ZB, et al. Numerical simulation of structural response during propeller-rudder interaction. Engineering Applications of Computational Fluid Mechanics, 2021, 15(1): 584-612 doi: 10.1080/19942060.2021.1899989
    Zhang WP, Ning XS, Li FG, et al. Vibrations of simplified rudder induced by propeller wake. Physics of Fluids, 2021, 33(8): 083618 doi: 10.1063/5.0058968
    Li DQ. A non-linear method for the propeller-rudder interaction with the slipstream deformation taken into account. Computer Methods in Applied Mechanics and Engineering, 1996, 130: 115-132 doi: 10.1016/0045-7825(96)80458-0
    Felli M, Camussi R, Giulio G. Experimental analysis of the flow field around a propeller-rudder configuration. Experiments in Fluids, 2009, 46: 147-164 doi: 10.1007/s00348-008-0550-0
    Felli M, Felchi M. Propeller tip and hub vortex dynamics in the interaction with a rudder. Experiments in Fluids, 2011, 51: 1385-1402 doi: 10.1007/s00348-011-1162-7
    Felli M, Grizzi S, Falchi M. Hydrodynamic and hydroacoustic phenomena in the propeller wake-rudder interaction//Proceedings 33rd International Conference on Ocean, Offshore and Arctic Engineering, San Francisco, California, 2014
    Felli M. Underlying mechanisms of propeller wake interaction with a wing. Journal of Fluid Mechanics, 2021, 908: A10 doi: 10.1017/jfm.2020.792
    Posa A, Broglia R, Balars E. Flow over a hydrofoil in the wake of a propeller. Computers & Fluids, 2020, 213: 1-16
    Posa A, Broglia R, Balaras E. The wake structure of a propeller operating upstream of a hydrofoil. Journal of Fluid Mechanics, 2020, 904: A12 doi: 10.1017/jfm.2020.680
    Posa A, Broglia R. Flow over a hydrofoil at incidence immersed within the wake of a propeller. Physics of Fluids, 2021, 33(12): 125108 doi: 10.1063/5.0075231
    Durbin PA. Pettersson-Reif BA. Statistical Theory and Modeling for Turbulent Flow-Second Edition. Chichester: Wiley, 2011
    Rodriguez S. Applied Computational Fluid Dynamics and Turbulence Modeling: Practical Tools, Tips and Techniques. Cham: Springer Nature Switzerland AG, 2019
    Roache PJ. Quantification of uncertainty in computational fluid dynamics. Annual Review of Fluid Mechanics, 1997, 29: 123-160 doi: 10.1146/annurev.fluid.29.1.123
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(19)  / Tables(3)

    Article Metrics

    Article views (428) PDF downloads(88) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint