EI、Scopus 收录
中文核心期刊
Zhu Wei, Wang Guohua. Past and future evolutions of fluid mechanics: Thinking triggered by the Batchelor Centennial event. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(1): 24-37. DOI: 10.6052/0459-1879-22-531
Citation: Zhu Wei, Wang Guohua. Past and future evolutions of fluid mechanics: Thinking triggered by the Batchelor Centennial event. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(1): 24-37. DOI: 10.6052/0459-1879-22-531

PAST AND FUTURE EVOLUTIONS OF FLUID MECHANICS: THINKING TRIGGERED BY THE BATCHELOR CENTENNIAL EVENT

  • Received Date: November 07, 2022
  • Accepted Date: December 16, 2022
  • Available Online: December 17, 2022
  • G.K. Batchelor is one of the giants of fluid mechanics in the in the twentieth century. He had made pioneering contributions in the field of homogeneous turbulence theory and low Reynolds number micro-fluid mechanics. He is the founder of Journal of Fluid Mechanics, one of the top journal in the field of fluid mechanics, and the department of applied mathematics and theoretical physics (DAMTP), whose spirit of pursuing physical and quantitative understanding of fluid flows has impressed the development of fluid mechanics in recent 100 years. He has cultivated and influenced a large number of scholars who have made outstanding achievements in numerous subjects of fluid mechanics, including turbulence theory, experimental fluid mechanics, turbulence stability, environmental fluid mechanics, multiphase fluid mechanics, magneto-hydrodynamics, micro- and nano-scale fluid mechanics, etc. Taking the G.K. Batchelor centennial event as an opportunity, this paper briefly reviews the evolution history of fluid mechanics in the past 300 years, including the three important stages of fluid mechanics: classical stage based on solid mathematics and physics foundation, the modern stage driven by application demands, and the contemporary stage characterized by discipline intersection and integration. Special concerns are concentrated on the formation, merging and inheritance of the distinct styles of the four schools in the modern stage of fluid mechanics in the past hundred years from the perspective of outstanding scholars and their key contributions to the discipline. The driving force and trend of the development of contemporary fluid mechanics are discussed taking wind-blown sand environmental mechanics as an example. It shows that fluid mechanics provides the basis for the development of branch disciplines, while the demands of branch disciplines drives the endogenous development of fluid mechanics which forms a spiral growth relationship. Finally, the progress spectrum and innovation trends of fluid mechanics in the future are revealed and discussed.
  • [1]
    Moffatt HK. George Keith Batchelor 8 March 1920-30 March 2000. Biographical Memoirs of Fellows of the Royal Society, 2002, 48: 25-41 doi: 10.1098/rsbm.2002.0002
    [2]
    Batchelor GK. Kolmogoroff’s theory of locally isotropic turbulence. Proceedings of the Cambridge Philosophical Society, 1947, 43: 533-559 doi: 10.1017/S0305004100023793
    [3]
    Frisch U. Turbulence, the Legacy of A. N. Kolmogorov. Cambridge, UK: Cambridge University Press, 1995
    [4]
    Batchelor GK, Townsend AA. Decay of vorticity in isotropic turbulence. Proceedings of the Royal Society of London. Series A, 1947, 190: 534-550
    [5]
    Batchelor GK, Townsend AA. Decay of isotropic turbulence in the initial period. Proceedings of the Royal Society of London. Series A, 1948, 193: 539-558
    [6]
    Batchelor GK, Townsend AA. Decay of turbulence in the final period. Proceedings of the Royal Society of London. Series A, 1948, 194: 527-543
    [7]
    Batchelor GK, Proudman I. The effect of rapid distortion of a fluid in turbulent motion. Quarterly Journal of Mechanics and Applied Mathematics, 1954, 7: 83-103 doi: 10.1093/qjmam/7.1.83
    [8]
    Batchelor GK. Diffusion in a field of homogeneous turbulence. II. The relative motion of particles. Proceedings of the Cambridge Philosophical Society, 1952, 48: 345-362
    [9]
    Batchelor GK. Sedimentation in a dilute of spheres. Journal of Fluid Mechanics, 1972, 52(2): 245-268 doi: 10.1017/S0022112072001399
    [10]
    Batchelor GK. The Theory of Homogeneous Turbulence. Cambridge, UK: Cambridge University Press, 1953
    [11]
    Batchelor GK. An Introduction to Fluid Dynamics. Cambridge, UK: Cambridge University Press, 1967
    [12]
    Gad-el-hak M. Fluid Mechanics from the beginning to the third millennium. International Journal of Engineering Science, 1998, 14(3): 177-185
    [13]
    武际可. 1920年以前力学发展史上的100篇重要文献. 力学与实践, 2006, 28(3): 85-91 (Wu Jike. 100 important pieces of literature in the history of mechanics before 1920. Mechanics in Engineering, 2006, 28(3): 85-91 (in Chinese) doi: 10.3969/j.issn.1000-0879.2006.03.025
    [14]
    Sutera SP, Skalak R. The history of Poiseuille's law. Annual Review of Fluid Mechanics, 1993, 25 (1): 1-20
    [15]
    李家春. 现代流体力学发展的回顾与展望. 力学进展, 1995, 25(4): 442-450 (Li Jiachun. Retrospect and prospects of fluid mechanics. Advances in Mechanics, 1995, 25(4): 442-450 (in Chinese) doi: 10.6052/1000-0992-1993-1-J1993-001
    [16]
    Davidson P, Kaneda Y, Moffatt K. Epilogue: A Turbulence Timeline. In: Davidson P, et al. ed. A Voyage Through Turbulence. Cambridge, UK: Cambridge University Press, 2011: 426-434
    [17]
    Prandtl L. über Flüssigkeitsbewegung bei sehr kleiner Reibung. Verhandl III, Intern. Math. Kongr. Heidelberg, Auch: Gesammelte Abhandlungen, 1904, 2: 484-491
    [18]
    von Karman. Tooling up mathematics for engineering. Quarterly of Applied Mathematics, 1943, 1: 2-6
    [19]
    Chou PY, Chou RL. 50 years of turbulence research in China. Annual Review of Fluid Mechanics, 1995, 27: 1-15 doi: 10.1146/annurev.fl.27.010195.000245
    [20]
    Schlichting H. Boundary Layer Theory. 7th ed. New York: McGraw Hill Company, 1978
    [21]
    Townsend AA. The Structure of Turbulent Shear Flow. Cambridge, UK: Cambridge University Press, 1956
    [22]
    Turner JS. Buoyant plumes and thermals. Annual Review of Fluid Mechanics, 1969, 1: 29-44 doi: 10.1146/annurev.fl.01.010169.000333
    [23]
    Turner JS. Double-diffusive phenomena. Annual Review of Fluid Mechanics, 1974, 6: 37-54 doi: 10.1146/annurev.fl.06.010174.000345
    [24]
    Phillips OM. The Dynamics of the Upper Ocean. Cambridge, UK: Cambridge University Press, 1977
    [25]
    Saffman PG. Vortex Dynamics. Cambridge, UK: Cambridge University Press, 1992
    [26]
    Gill AE. Atmosphere-ocean Dynamics. Cambridge, UK: Cambridge University Press, 1982
    [27]
    Monin AS, Yaglom A. Statistical Fluid Mechanics, vol. I. & II. Cambridge, Massachusetts: MIT Press, 1971
    [28]
    Liepmann HW, Puckett AE. Introduction to Aerodynamics of A Compressible Fluid. New York: John Wiley & Sons, 1947
    [29]
    Liepmann HW, Roshko A. Elements of Gas Dynamics. New York, US: John Wiley & Sons, 1957
    [30]
    Lighthill J. Sydney Goldstein. 3 December 1903-22 January 1989. Biographical Memoirs of Fellows of the Royal Society, 1990, 36: 174
    [31]
    谈庆明. 钱学森对近代力学的发展所做的贡献. 力学进展, 2001, 4: 500-508 (Tan Qingming. Contributions to development of modern mechanics by H. S. Tsien. Advances In Mechanics, 2001, 4: 500-508 (in Chinese) doi: 10.6052/1000-0992-2001-4-J2001-109
    [32]
    黄虎. 由《郭永怀文集》识郭永怀. 应用数学和力学, 2018, 12: 1323-1330 (Huang Hu. Understanding of Guo Yonghuai from the collected works of Guo Yonghuai. Applied Mathematics and Mechanics, 2018, 12: 1323-1330 (in Chinese)
    [33]
    西北工业大学学术委员会. 罗时钧先生学术生涯及辉煌成就. 西北工业大学学报, 2013, 4: 668-675 (Academic Committee of Northwestern Polytechnical Universit. Luo Shijun's academic career and brilliant scientific achievements. Journal of Northwestern Polytechnical University, 2013, 4: 668-675 (in Chinese) doi: 10.3969/j.issn.1000-2758.2013.04.037
    [34]
    崔尔杰. 空天技术发展与现代空气动力学. 力学进展, 2005, 2: 145-152 (Cui Erjie. The development of aero-astronautic technology and modern aerodynamics. Advances in Mechanics, 2005, 2: 145-152 (in Chinese) doi: 10.6052/1000-0992-2005-2-J2005-031
    [35]
    Sun BH. Thirty years of turbulence study in China. Applied Mathematics and Mechanics (English Edition) , 2019, 40(2): 193-214 doi: 10.1007/s10483-019-2427-9
    [36]
    Similon PL, Sudan RN. Plasma turbulence. Annual Review of Fluid Mechanics, 1990, 22: 317-347 doi: 10.1146/annurev.fl.22.010190.001533
    [37]
    Korobeinikov VP. Gas dynamics of explosions. Annual Review of Fluid Mechanics, 1971, 3: 317-346 doi: 10.1146/annurev.fl.03.010171.001533
    [38]
    Stone HA, Stroock AD, Ajdari A. Engineering flows in small devices: microfluidics toward a lab-on-a-chip. Annual Review of Fluid Mechanics, 2004, 36: 381-411 doi: 10.1146/annurev.fluid.36.050802.122124
    [39]
    De Wit A. Chemo-hydrodynamic patterns and instabilities. Annual Review of Fluid Mechanics, 2020, 52: 531-555 doi: 10.1146/annurev-fluid-010719-060349
    [40]
    Bjerknes V. Das problem der wettervorhersage, betrachtet vom standpunkte der mechanik und der physik. Meteorologische Zeitschrift, 1904, 21: 1-7
    [41]
    Taylor GI. Eddy motion in the atmosphere. Proceedings of the Royal Society of London. Series A, 1915, 215: 1-26
    [42]
    Prandtl L. Meteorologische anwendung der strö mungslehre. Beiträ ge zur Physik der freien Atmosphä re, 1932, 19: 188-202
    [43]
    von Karman T. Sand Ripples in the Desert. Technion Yearbook, 1943, 52-54: CW98
    [44]
    李家春. 环境流体力学——它的意义、内容和方法. 力学与实践, 1991, 13(2): 1-12 (Li Jiachun. Environmental fluid dynamics: its significance, contents and methods. Mechanics in Engineering, 1991, 13(2): 1-12 (in Chinese)
    [45]
    Bagnold RA. The Physics of Blown Sand and Desert Dunes. London: Methuen, 1941
    [46]
    Owen PR. Saltation of uniform grains in air. Journal of Fluid Mechanics, 1964, 20(2): 225-242 doi: 10.1017/S0022112064001173
    [47]
    Anderson RS, Haff PK. Simulation of eolian saltation. Science, 1988, 241(4867): 820-823 doi: 10.1126/science.241.4867.820
    [48]
    Smagorinsky J. General circulation experiments with the primitive equations, I. The basic experiment. Monthly Weather Review, 1963, 91: 99-164 doi: 10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
    [49]
    Vinkovic I, Aguirre C, Ayrault M, et al. Large-eddy simulation of the dispersion of solid particles in a turbulent boundary layer. Boundary-Layer Meteorology, 2006, 121: 283-311 doi: 10.1007/s10546-006-9072-6
    [50]
    Deardorff JW. A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers. Journal of Fluid Mechanics, 1970, 41(2): 453-480 doi: 10.1017/S0022112070000691
    [51]
    Zheng XJ, Feng SJ, Wang P. Modulation of turbulence by saltating particles on erodible bed surface. Journal of Fluid Mechanics, 2021, 918: A16 doi: 10.1017/jfm.2021.329
    [52]
    Wang GH, Zheng XJ. Very large scale motions in the atmospheric surface layer: A field investigation. Journal of Fluid Mechanics, 2016, 802: 464-489 doi: 10.1017/jfm.2016.439
    [53]
    郑晓静, 王国华. 高雷诺数壁湍流的研究进展及挑战. 力学进展, 2020, 50(1): 202001 (Zheng Xiaojing, Wang Guohua. Progresses and challenges of high Reynolds number wall-bounded turbulence. Advances in Mechanics, 2020, 50(1): 202001 (in Chinese) doi: 10.6052/1000-0992-19-009
  • Related Articles

    [1]Wei Xizhong, Wang Yongshuai, Chen Yihong, Ji Bin. PREDICTION METHOD OF PROPELLER TIP VORTEX CAVITATION INCEPTION BASED ON TREND MUTATION TEST[J]. Chinese Journal of Theoretical and Applied Mechanics, 2025, 57(3): 605-615. DOI: 10.6052/0459-1879-24-448
    [2]Li Longlong, Fang Huijun, Ge Tengze, Liu Yuewu, Wang Feng, Liu Danlu, Ding Jiuge, Yu Yueyu. CO2 SEQUESTRATION IN UCG CAVITIES: RESEARCH PROGRESS AND FUTURE DEVELOPMENT TRENDS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(3): 732-743. DOI: 10.6052/0459-1879-22-538
    [3]Guo Xinlei, Wang Tao, Fu Hui, Pan Jiajia, Lu Jinzhi, Guo Yongxin, Li Jiazhen. PROGRESS AND TREND IN THE STUDY OF RIVER ICE HYDRAULICS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(3): 655-671. DOI: 10.6052/0459-1879-20-407
    [4]Huang Zhangfeng, Zhang Panfeng, Zhan Shige. REVIEW OF THE TENTH NATIONAL SYMPOSIUM ON FLUID MECHANICS FOR YOUNG SCHOLARS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(6): 1428-1434. DOI: 10.6052/0459-1879-17-313
    [5]Li Shucai, Wang Kang, Li Liping, Zhou Zongqing, Shi Shaoshuai, Liu Shang. MECHANICAL MECHANISM AND DEVELOPMENT TREND OF WATER-INRUSH DISASTERS IN KARST TUNNELS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(1): 22-30. DOI: 10.6052/0459-1879-16-345
    [6]Zhang Li, Li Zhichuan. DEVELOPMENT STATUS, TREND AND THE PROBLEMS OF MECHANICS OF TIDAL CURRENT ENERGY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(5): 1019-1032. DOI: 10.6052/0459-1879-15-299
    [7]Luo Zhenbing, Sun Mingbo, Zhang Panfengy. REVIEW OF THE NINTH NATIONAL SYMPOSIUM ON FLUID MECHANICS FOR YOUNG SCHOLARS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(2): 511-517. DOI: 10.6052/0459-1879-16-054
    [8]Wu Chuijie. Energy saving mechanism of ``channeling effect'' in fish school swimming[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(1): 18-23. DOI: 10.6052/0459-1879-2011-1-lxxb2010-216
    [9]有孔隙的耦合热弹性体动力学的一些基本原理[J]. Chinese Journal of Theoretical and Applied Mechanics, 1996, 28(1): 55-65. DOI: 10.6052/0459-1879-1996-1-1995-302

Catalog

    Article Metrics

    Article views (1346) PDF downloads (422) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return