Citation: | Wu Xueyan, Li Yu, Xie Yanyan, Li Fei, Chen Sheng. Research on heterogeneous solid stress model based on artificial neural network. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(2): 532-542 doi: 10.6052/0459-1879-22-511 |
[1] |
李洪钟, 郭慕孙. 回眸与展望流态化科学与技术. 化工学报, 2013, 64(1): 52-62 (Li Hongzhong, Guo Musun. Review and prospect of fluidization science and technology. CIESC Journal, 2013, 64(1): 52-62 (in Chinese)
|
[2] |
Zhao X, Jiang Y, Li F, et al. A scaled MP-PIC method for bubbling fluidized beds. Powder Technol, 2022, 404: 117501 doi: 10.1016/j.powtec.2022.117501
|
[3] |
Chen XZ, Wang JW. A comparison of two-fluid model, dense discrete particle model and CFD-DEM method for modeling impinging gas-solid flows. Powder Technol, 2014, 254: 94-102 doi: 10.1016/j.powtec.2013.12.056
|
[4] |
Cai W, Kong X, Ye Q, et al. Numerical modelling of hydrodynamics of molten salt fluid-particles fluidized beds using CFD-DEM and TFM approaches. Powder Technol, 2022, 410: 117882
|
[5] |
Leckner B. Hundred years of fluidization for the conversion of solid fuels. Powder Technol, 2022, 411: 117935
|
[6] |
Wang J, Ku X, Lin J. Numerical investigation of biomass pyrolysis performance in a fluidized-bed reactor by a TFM-DEM hybrid model. Chemical Engineering Science, 2022, 260: 117922 doi: 10.1016/j.ces.2022.117922
|
[7] |
Chu KW, Chen YX, Ji L, et al. Coarse-grained CFD-DEM study of Gas-solid flow in gas cyclone. Chemical Engineering Science, 2022, 260: 117906 doi: 10.1016/j.ces.2022.117906
|
[8] |
Gao X, Li TW, Sarkar A, et al. Development and validation of an enhanced filtered drag model for simulating gas-solid fluidization of Geldart A particles in all flow regimes. Chemical Engineering Science, 2018, 184: 33-51 doi: 10.1016/j.ces.2018.03.038
|
[9] |
Sarkar A, Sun X, Sundaresan S. Verification of sub-grid filtered drag models for gas-particle fluidized beds with immersed cylinder arrays. Chemical Engineering Science, 2014, 114: 144-154 doi: 10.1016/j.ces.2014.04.018
|
[10] |
Ebrahimi M, Crapper M, Ooi JY. Numerical and experimental study of horizontal pneumatic transportation of spherical and low-aspect-ratio cylindrical particles. Powder Technol, 2016, 293: 48-59 doi: 10.1016/j.powtec.2015.12.019
|
[11] |
Miao Z, Kuang SB, Zughbi H, et al. CFD simulation of dilute-phase pneumatic conveying of powders. Powder Technol, 2019, 349: 70-83 doi: 10.1016/j.powtec.2019.03.031
|
[12] |
Radl S, Sundaresan S. A drag model for filtered Euler-Lagrange simulations of clustered gas-particle suspensions. Chemical Engineering Science, 2014, 117: 416-425 doi: 10.1016/j.ces.2014.07.011
|
[13] |
Yuan ZH, Wang SY, Shao BL, et al. Investigation on effect of drag models on flow behavior of power-law fluid-solid two-phase flow in fluidized bed. Particuology, 2022, 70: 43-54 doi: 10.1016/j.partic.2022.01.008
|
[14] |
Yang N, Chen JH, Ge W, et al. A conceptual model for analyzing the stability condition and regime transition in bubble columns. Chemical Engineering Science, 2010, 65(1): 517-526 doi: 10.1016/j.ces.2009.06.014
|
[15] |
Kadyrov T, Li F, Wang W. Impacts of solid stress model on MP-PIC simulation of a CFB riser with EMMS drag. Powder Technol, 2019, 354: 517-528 doi: 10.1016/j.powtec.2019.06.018
|
[16] |
姜勇. 基于MP-PIC方法的流态化反应器快速模拟研究. [博士论文]. 北京: 中国科学院大学, 2020
Jiang Yong. Rapid simulation of fluidized reactor based on MP-PIC method. [PhD Thesis]. Beijing: University of Chinese Academy of Sciences, 2020 (in Chinese))
|
[17] |
Jiang Y, Li F, Ge W, et al. EMMS-based solid stress model for the multiphase particle-in-cell method. Powder Technol, 2020, 360: 1377-1387 doi: 10.1016/j.powtec.2019.09.031
|
[18] |
Harris A, Davidson J, Thorpe R. The prediction of particle cluster properties in the near wall region of a vertical riser (200157). Powder Technol, 2002, 127(2): 128-143 doi: 10.1016/S0032-5910(02)00114-6
|
[19] |
Wang J, Ge W, Li J. Eulerian simulation of heterogeneous gas–solid flows in CFB risers: EMMS-based sub-grid scale model with a revised cluster description. Chemical Engineering Science, 2008, 63(6): 1553-1571 doi: 10.1016/j.ces.2007.11.023
|
[20] |
Zou B, Li H, Xia Y, et al. Cluster structure in a circulating fluidized bed. Powder Technol, 1994, 78(2): 173-178 doi: 10.1016/0032-5910(93)02786-A
|
[21] |
Aguila-Leon J, Vargas-Salgado C, Chiñas-Palacios C, et al. Energy management model for a standalone hybrid microgrid through a particle Swarm optimization and artificial neural networks approach. Energy Conversion and Management, 2022, 267: 115920 doi: 10.1016/j.enconman.2022.115920
|
[22] |
Calisir T, Çolak AB, Aydin D, et al. Artificial neural network approach for investigating the impact of convector design parameters on the heat transfer and total weight of panel radiators. International Journal of Thermal Sciences, 2023, 183: 107845 doi: 10.1016/j.ijthermalsci.2022.107845
|
[23] |
Skrypnik A, Shchelchkov A, Gortyshov YF, et al. Artificial neural networks application on friction factor and heat transfer coefficients prediction in tubes with inner helical-finning. Applied Thermal Engineering, 2022, 206: 118049 doi: 10.1016/j.applthermaleng.2022.118049
|
[24] |
Kalay E, Boğoçlu ME, Bolat B. Mass flow rate prediction of screw conveyor using artificial neural network method. Powder Technol, 2022, 408: 117757 doi: 10.1016/j.powtec.2022.117757
|
[25] |
Zhang K, Zhang Z, Han Y, et al. Artificial neural network modeling for steam ejector design. Applied Thermal Engineering, 2022, 204: 117939 doi: 10.1016/j.applthermaleng.2021.117939
|
[26] |
Afandi A, Lusi N, Catrawedarma I, et al. Prediction of temperature in 2 meters temperature probe survey in Blawan geothermal field using artificial neural network (ANN) method. Case Studies in Thermal Engineering, 2022, 38: 102309 doi: 10.1016/j.csite.2022.102309
|
[27] |
Pappachan BK, Tjahjowidodo T. Parameter Prediction Using Machine Learning in Robot-Assisted Finishing Process. International Journal of Mechanical Engineering and Robotics Research, 2020, 9(3): 435-440
|
[28] |
Gao G, Li Y, Li J, et al. A hybrid model for short-term rainstorm forecasting based on a back-propagation neural network and synoptic diagnosis. Atmospheric and Oceanic Science Letters, 2021, 14(5): 100053 doi: 10.1016/j.aosl.2021.100053
|
[29] |
Chen H, Wang Y, Zuo MS, et al. A new prediction model of CO2 diffusion coefficient in crude oil under reservoir conditions based on BP neural network. Energy, 2022, 239: 122286 doi: 10.1016/j.energy.2021.122286
|
[30] |
Snider DM. An incompressible three-dimensional multiphase particle-in-cell model for dense particle flows. J Comput Phys, 2001, 170(2): 523-549 doi: 10.1006/jcph.2001.6747
|
[31] |
Li F, Song FF, Benyahia S, et al. MP-PIC simulation of CFB riser with EMMS-based drag model. Chemical Engineering Science, 2012, 82: 104-113 doi: 10.1016/j.ces.2012.07.020
|
[32] |
Ariyaratne WKH, Ratnayake C, Melaaen MC. Application of the MP-PIC method for predicting pneumatic conveying characteristics of dilute phase flows. Powder Technol, 2017, 310: 318-328 doi: 10.1016/j.powtec.2017.01.048
|
[33] |
Kadyrov T, Li F, Wang W. Bubble-based EMMS/DP drag model for MP-PIC simulation. Powder Technol, 2020, 372: 611-624 doi: 10.1016/j.powtec.2020.06.023
|
[34] |
Dymala T, Wytrwat T, Heinrich S. MP-PIC simulation of circulating fluidized beds using an EMMS based drag model for Geldart B particles. Particuology, 2021, 59: 76-90 doi: 10.1016/j.partic.2021.07.002
|
[35] |
鲁波娜. 基于EMMS的介尺度模型及其在气固两相流模拟中的应用. [博士论文]. 北京: 中国科学院过程工程研究所, 2009
Lu Bona. EMMS-based meso-scale model and its application in simulating gas-solid two-phase flows. [PhD Thesis]. Beijing: Institute of Process Engineering, Chinese Academy of Sciences, 2009 (in Chinese)
|
[36] |
Li J, Kwauk M. Particle-fluid Two-phase Flow: The Energy-minimization Multi-scale Method. Beijing: Metallurgical Industry Press, 1994
|
[37] |
Lu B, Wang W, Li J. Eulerian simulation of gas–solid flows with particles of Geldart groups A, B and D using EMMS-based meso-scale model. Chemical Engineering Science, 2011, 66(20): 4624-4635 doi: 10.1016/j.ces.2011.06.026
|
[38] |
Wang W, Li J. Simulation of gas–solid two-phase flow by a multi-scale CFD approach —of the EMMS model to the sub-grid level. Chemical Engineering Science, 2007, 62(1-2): 208-231 doi: 10.1016/j.ces.2006.08.017
|