Citation: | Xiong Yukai, Zhao Jianfeng, Rao Wei, Huang Zhiyong, Kang Guozheng, Zhang Xu. Secondary orientation effects of Ni-based alloys with cooling holes: A strain gradient crystal plasticity FEM study. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(1): 120-133. DOI: 10.6052/0459-1879-22-497 |
[1] |
Mao HZ, Wen ZX, Yue ZF, et al. The evolution of plasticity for nickel-base single crystal cooled blade with film cooling holes. Materials Science & Engineering A, 2013, 587: 79-84
|
[2] |
Gupta S, Bronkhorst CA. Crystal plasticity model for single crystal Ni-based superalloys: Capturing orientation and temperature dependence of flow stress. International Journal of Plasticity, 2021, 137: 102896 doi: 10.1016/j.ijplas.2020.102896
|
[3] |
Pei HQ, Yang YZ, Gu SN, et al. Study on oxidation-creep behavior of a Ni-based single crystal superalloy based on crystal plasticity theory. Materials Science and Engineering: A, 2022, 839: 142834 doi: 10.1016/j.msea.2022.142834
|
[4] |
Zhang WT, Jiang R, Zhao Y, et al. Effects of temperature and microstructure on low cycle fatigue behaviour of a PM Ni-based superalloy: EBSD assessment and crystal plasticity simulation. International Journal of Fatigue, 2022, 159: 106818 doi: 10.1016/j.ijfatigue.2022.106818
|
[5] |
Li KS, Wang RZ, Yuan GJ, et al. A crystal plasticity-based approach for creep-fatigue life prediction and damage evaluation in a nickel-based superalloy. International Journal of Fatigue, 2021, 143: 106031 doi: 10.1016/j.ijfatigue.2020.106031
|
[6] |
Hou NX, Gou WX, Wen ZX, et al. The influence of crystal orientations on fatigue life of single crystal cooled turbine blade. Materials Science and Engineering A, 2008, 492(1-2): 413-418
|
[7] |
张健, 王莉, 王栋等. 镍基单晶高温合金的研发进展. 金属学报, 2019, 55: 1077-1094 (Zhang Jian, Wang Li, Wang Dong, et al. Recent progress in research and development of nickel-based single crystal superalloys. Acta Metallurgica Sinica, 2019, 55: 1077-1094 (in Chinese)
|
[8] |
张航, 许庆彦, 孙长波等. 单晶高温合金螺旋选晶过程的数值模拟与实验研究. 金属学报, 2013, 49: 1508-1520 (Zhang Hang, Xu QingYan, Sun ChangBo, et al. Simulation and experimental studies on grain selection behavior of single crystal superalloy. Acta Metallurgica Sinica, 2013, 49: 1508-1520 (in Chinese)
|
[9] |
Wang LN, Liu Y, Yu JJ, et al. Orientation and temperature dependence of yielding and deformation behavior of a nickel-base single crystal superalloy. Materials Science and Engineering A, 2009, 505(1-2): 144-150 doi: 10.1016/j.msea.2008.12.039
|
[10] |
Zhai Y, Khan MK, Correia J, et al. Effect of secondary crystal orientations on the deformation anisotropy for nickel-based single-crystal plate with notch feature. Journal of Strain Analysis, 2019, 54(1): 54-64
|
[11] |
Zhou ZJ, Wang L, Wang D, et al. Effect of secondary orientation on room temperature tensile behaviors of Ni-base single crystal superalloys. Materials Science & Engineering A, 2016, 659: 130-142
|
[12] |
Zhou ZJ, Liu T, Pu S, et al. Effect of holes on the room temperature tensile behaviors of thin wall specimens with (210) side surface of Ni-base single crystal superalloy. Journal of Alloys and Compounds, 2015, 647: 802-808 doi: 10.1016/j.jallcom.2015.06.069
|
[13] |
Weck A, Wilkinson DS. Experimental investigation of void coalescence in metallic sheets containing laser drilled holes. Acta Materialia, 2008, 56(8): 1774-1784 doi: 10.1016/j.actamat.2007.12.035
|
[14] |
Wen Z, Liang J, Liu C, et al. Prediction method for creep life of thin-wall specimen with film cooling holes in Ni-based single-crystal superalloy. International Journal of Mechanical Sciences, 2018, 141: 276-289 doi: 10.1016/j.ijmecsci.2018.04.018
|
[15] |
Arakere NK, Siddiqui S, Ebrahimi F. Evolution of plasticity in notched Ni-base superalloy single crystals. International Journal of Solids and Structures, 2009, 46(16): 3027-3044 doi: 10.1016/j.ijsolstr.2009.04.006
|
[16] |
Dindarlou S, Castelluccio GM. Substructure-sensitive crystal plasticity with material-invariant parameters. International Journal of Plasticity, 2022, 155: 103306 doi: 10.1016/j.ijplas.2022.103306
|
[17] |
Wen Z, Pei H, Yang H, et al. A combined CP theory and TCD for predicting fatigue lifetime in single-crystal superalloy plates with film cooling holes. International Journal of Fatigue, 2018, 111: 243-255 doi: 10.1016/j.ijfatigue.2018.02.020
|
[18] |
Soare MA, Huang S, Karadge M. Crystal plasticity model for nickel-based superalloy rené 88 dt at elevated temperature. Superalloys, 2020, 2020: 659-668
|
[19] |
Sabnis PA, Forest S, Arakere NK, et al. Crystal plasticity analysis of cylindrical indentation on a Ni-base single crystal superalloy. International Journal of Plasticity, 2013, 51: 200-217 doi: 10.1016/j.ijplas.2013.05.004
|
[20] |
Knezevic M, Crapps J, Beyerlein IJ, et al. Anisotropic modeling of structural components using embedded crystal plasticity constructive laws within finite elements. International Journal of Mechanical Sciences, 2016, 105: 227-238 doi: 10.1016/j.ijmecsci.2015.11.021
|
[21] |
Keshavarz S, Ghosh S. Hierarchical crystal plasticity FE model for nickel-based superalloys: Sub-grain microstructures to polycrystalline aggregates. International Journal of Solids and Structures, 2015, 55: 17-31 doi: 10.1016/j.ijsolstr.2014.03.037
|
[22] |
Han QN, Qiu WH, Shang YB, et al. In-situ SEM observation and crystal plasticity finite element simulation of fretting fatigue crack formation in Ni-base single-crystal superalloys. Tribology International, 2016, 101: 33-42 doi: 10.1016/j.triboint.2016.03.025
|
[23] |
Eidel B. Crystal plasticity finite-element analysis versus experimental results of pyramidal indentation into (001) fcc single crystal. Acta Materialia, 2011, 59(4): 1761-1771 doi: 10.1016/j.actamat.2010.11.042
|
[24] |
Sakaguchi M, Komamura R, Chen X, et al. Crystal plasticity assessment of crystallographic Stage I crack propagation in a Ni-based single crystal superalloy. International Journal of Fatigue, 2019, 123: 10-21 doi: 10.1016/j.ijfatigue.2019.02.003
|
[25] |
Li ZW, Wen ZX, Gu S, et al. In-situ observation of crack initiation and propagation in Ni-based superalloy with film cooling holes during tensile test. Journal of Alloys and Compounds, 2019, 793: 65-76
|
[26] |
熊骏, 李振环, 朱亚新等. 基于微结构动态演化机制的单晶镍基高温合金晶体塑性本构及其有限元模拟. 力学学报, 2017, 49: 765-781 (Xiong Jun, Li ZHhuan, Zhu YaXin, et al. Microstructure evolution mechanism based crystal-plasticity constitutive model for nickel-based superalloy and its finite element simulation. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49: 765-781 (in Chinese)
|
[27] |
Schilli S, Seifert T, Kreins M, et al. Bauschinger effect and latent hardening under cyclic micro-bending of Ni-base Alloy 718 single crystals: Part II. Single crystal plasticity modeling with latent kinematic hardening. Materials Science and Engineering: A, 2022, 830: 142030
|
[28] |
Shanthraj P, Zikry MA. Dislocation-density mechanisms for void interactions in crystalline materials. International Journal of Plasticity, 2012, 34: 154-163 doi: 10.1016/j.ijplas.2012.01.008
|
[29] |
Shang Y, Zhang H, Hou H, et al. High temperature tensile behavior of a thin-walled Ni based single-crystal superalloy with cooling hole: In-situ experiment and finite element calculation. Journal of Alloys and Compounds, 2019, 782: 619-631 doi: 10.1016/j.jallcom.2018.12.232
|
[30] |
Wen ZX, Li ZW, Zhang YM, et al. Surface slip deformation characteristics for perforated Ni-based single crystal thin plates with square and triangular penetration patterns. Materials Science & Engineering A, 2018, 723: 56-69
|
[31] |
Li Z, Gao H, Wen Z, et al. Microcrack initiation behavior around film cooling holes in a Ni-based single crystal: In situ observation and crystal plastic analysis. Materials Science & Engineering A, 2020, 771: 138609
|
[32] |
Zhou H, Zhang X, Wang P, et al. Crystal plasticity analysis of cylindrical holes and their effects on the deformation behavior of Ni-based single-crystal superalloys with different secondary orientations. International Journal of Plasticity, 2019, 119: 249-272 doi: 10.1016/j.ijplas.2019.04.009
|
[33] |
Zhang T, Collins DM, Dunne FPE, et al. Crystal plasticity and high-resolution electron backscatter diffraction analysis of full-field polycrystal Ni superalloy strains and rotations under thermal loading. Acta Materialia, 2014, 80: 25-38 doi: 10.1016/j.actamat.2014.07.036
|
[34] |
Ali MA, Amin W, Shchyglo O, et al. 45-degree rafting in Ni-based superalloys: A combined phase-field and strain gradient crystal plasticity study. International Journal of Plasticity, 2020, 128: 102659 doi: 10.1016/j.ijplas.2020.102659
|
[35] |
Roters F, Diehl M, Shanthraj P, et al. DAMASK-The Düsseldorf Advanced Material Simulation Kit for modeling multi-physics crystal plasticity, thermal, and damage phenomena from the single crystal up to the component scale. Computational Materials Science, 2019, 158: 420-478 doi: 10.1016/j.commatsci.2018.04.030
|
[36] |
Roters F. Advanced Material Models for the Crystal Plasticity Finite Element Method. Warstein: Fakultät für Georessourcen und Materialtechnik, 2011
|
[37] |
Kords C. On the Role of Dislocation Transport in the Constitutive Description of Crystal Plasticity. Berlin: Epubli GmbH, 2013
|
[38] |
Orowan E, Zur kristallplastizitgt. I. Tieftemperaturplastizitiit und beckersche formel. Zeitschrift für Physik, 1934, 89(9-10): 605
|
[39] |
Arsenlis A, Parks DM. Modeling the evolution of crystallographic dislocation density in crystal plasticity. Journal of the Mechanics and Physics of Solids, 2002, 50(9): 1979 doi: 10.1016/S0022-5096(01)00134-X
|
[40] |
Hirth JP, Lothe J. Theory of Dislocations. New York: Wiley, 1982
|
[41] |
Kubin L, Devincre B, Hoc T. Modeling dislocation storage rates and mean free paths in face-centered cubic crystals. Acta Materialia, 2008, 56(20): 6040-6049 doi: 10.1016/j.actamat.2008.08.012
|
[42] |
Nye JF. Some geometrical relations in dislocated crystals. Acta Metallurgica, 1952, 1(2): 153-162
|
[43] |
Su Y, Han QN, Qiu WH, et al. High temperature in-situ SEM observation and crystal plasticity simulation on fretting fatigue of Ni-based single crystal superalloys. International Journal of Plasticity, 2020, 127: 102645 doi: 10.1016/j.ijplas.2019.102645
|
[44] |
Qiu WH, He ZW, Fan YN, et al. Effects of secondary orientation on crack closure behavior of nickel-based single crystal superalloys. International Journal of Fatigue, 2016, 83: 335-343 doi: 10.1016/j.ijfatigue.2015.11.004
|
[45] |
Suzuki S, Sakaguchi M, Inoue H. Temperature dependent fatigue crack propagation in a single crystal Ni-base superalloy affected by primary and secondary orientations. Materials Science & Engineering A, 2018, 724: 559-565
|
[46] |
Seeger A. The temperature dependence of the critical shear stress and of work-hardening of metal crystals. Philosophical Magazine and Journal of Science, 2010, 45(366): 771
|
[47] |
Sabnis PA, Mazière M, Forest S, et al. Effect of secondary orientation on notch-tip plasticity in superalloy single crystals. International Journal of Plasticity, 2012, 28(1): 102-123 doi: 10.1016/j.ijplas.2011.06.003
|
[48] |
Ashby MF, The deformation of plastically non-homogeneous materials. Philosophical Magazine, 1970, 21: 399-424
|
[1] | Hua Fenfei, Luo Tong, Lei Jian, Liu Dabiao. STUDY OF CONFINED LAYER PLASTICITY BASED ON HIGHER-ORDER STRAIN GRADIENT PLASTICITY THEORY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(2): 399-408. DOI: 10.6052/0459-1879-23-318 |
[2] | Xu Xiaojian, Deng Zichen. DISCUSSION ON BOUNDARY VALUE PROBLEMS OF A MINDLIN PLATE BASED ON THE SIMPLIFIED STRAIN GRADIENT ELASTICITY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(11): 3080-3087. DOI: 10.6052/0459-1879-22-310 |
[3] | Xu Wei, Wang Lifeng, Jiang Jingnong. FINITE ELEMENT ANALYSIS OF STRAIN GRADIENT MIDDLE THICK PLATE MODEL ON THE VIBRATION OF GRAPHENE SHEETS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(5): 751-761. DOI: 10.6052/0459-1879-15-074 |
[4] | Jie Zhao, Wanji Chen, Bin Ji. A study on the two second-order strain gradient theories[J]. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(1): 138-145. DOI: 10.6052/0459-1879-2010-1-2008-517 |
[5] | Dake Yi, T.C. Wang. Energy non-local model and new strain gradient theory[J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(1): 60-66. DOI: 10.6052/0459-1879-2009-1-2008-025 |
[6] | Xiuyan Feng, Xianghua Guo, Daining Fang, Ziqiang Wang. Three-point microbend size effects for pure Ni foils[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(4): 479-485. DOI: 10.6052/0459-1879-2007-4-2006-274 |
[7] | Weihong Zhang, Gaoming Dai, Fengwen Wang, Shiping Sun, Hicham Bassir. Topology optimization of material microstructures using strain energy-based prediction of effective elastic properties[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(1): 77-89. DOI: 10.6052/0459-1879-2007-1-2006-086 |
[8] | Optimization method of hybrid element stress function for strain gradient theory based on Hellinger-Reissner principle[J]. Chinese Journal of Theoretical and Applied Mechanics, 2005, 37(3): 301-306. DOI: 10.6052/0459-1879-2005-3-2004-139 |
[9] | The influence of indenter tip radius to micro-indentation tests[J]. Chinese Journal of Theoretical and Applied Mechanics, 2004, 36(6): 680-687. DOI: 10.6052/0459-1879-2004-6-2004-046 |
[10] | FINITE ELEMENT ANALYSIS FOR GRADIENT PLASTICITY AND MODELLING OF STRAIN LOCALIZATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 1996, 28(5): 575-584. DOI: 10.6052/0459-1879-1996-5-1995-371 |