Citation: | Huang Congyi, Zhao Weiwen, Wan Decheng. Simulation of the motion of an elastic hull in regular waves based on MPS-FEM method. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(12): 3319-3332 doi: 10.6052/0459-1879-22-468 |
[1] |
王加夏, 周天九, 刘昆等. 规则波迎浪砰击下三维船体耦合响应研究. 江苏科技大学学报(自然科学版), 2020, 34(4): 13-24 (Wang Jiaxia, Zhou Tianjiu, Liu Kun, et al. Fluid-structure coupling response of a three dimensional ship under regular head wave slamming loads. Journal of Jiangsu University of Science and Technology (Natural Science Edition)
|
[2] |
Oberhagemann J, Holtmann M, Moctar O, et al. Stern slamming of a LNG carrier. Journal of Offshore Mechanics & Arctic Engineering, 2009, 131(3): 1672-1682
|
[3] |
Lakshmynarayanana P, Temarel P, Chen Z. Coupled fluid structure interaction to model three-dimensionaldynamic behaviour of ship in waves//7th International Conference on Hydroelasticity in Marine Technology, Split, Croatia, 2015
|
[4] |
Kim Y, Kim K, Kim Y. Analysis of hydroelasticity of floating shiplike structure in time domain using a fully coupled hybrid BEM-FEM. Journal of Ship Research, 2009, 53(1): 31-47 doi: 10.5957/jsr.2009.53.1.31
|
[5] |
Malenica S, Tuitman J, Bigot F, et al. Some Aspects of 3D Linear Hydroelastic Models of Springing. International Conference on Hydrodynamics, France, 2008.
|
[6] |
Gao R, Ren B, Wang G, et al. Numerical modelling of regular wave slamming on surface of open-piled structures with the corrected SPH method. Applied Ocean Research, 149 2012, 34: 173-186
|
[7] |
Omidvar P, Stansby P, Rogers B. Wave body interaction in 2D using smoothed particle hydrodynamics (SPH) with variable particle mass. International Journal for Numerical Methods in Fluids, 2012, 68(6): 686-705 doi: 10.1002/fld.2528
|
[8] |
Sueyoshi M, Kashiwagi M, Naito S. Numerical simulation of wave-induced nonlinear motions of a two-dimensional floating body by the moving particle semi-implicit method. Journal of Marine Science and Technology, 2008, 13(2): 85-94 doi: 10.1007/s00773-007-0260-y
|
[9] |
Sueyoshi M. Numerical simulation of extreme motions of a floating body by MPS method. Bridges Across the Oceans, Kobe, Japan, 2004, 1: 566-572
|
[10] |
饶成平. 基于MPS-FEM耦合方法研究孤立波对弹性结构物的砰击. [硕士论文]. 上海: 上海交通大学, 2018
Rao Chengping. Numerical investigation of solitary wave-induced slamming on flexible structure by MPS-FEM coupled method. [Master Thesis]. Shanghai: Shanghai Jiao Tong University, 2018 (in Chinese)
|
[11] |
Zhang G, Rao C, Wan D. Numerical study of solitary wave slamming on a 3-D flexible plate by MPS-FEM Coupled Method//The Twenty-eighth International Ocean and Polar Engineering Conference (ISOPE2018), Sapporo, Japan, June 10-15, 2018: 46-53
|
[12] |
Lind S, Xu R, Stansby P, et al. Incompressible smoothed particle hydrodynamics for free-surface flows: A generalised diffusion-based algorithm for stability and validations for impulsive flows and propagating waves. Journal of Computational Physics, 2012, 231(4): 1499-1523 doi: 10.1016/j.jcp.2011.10.027
|
[13] |
Sun P, Luo M, Touzé DL, et al. The suction effect during freak wave slamming on a fixed platform deck: Smoothed particle hydrodynamics simulation and experimental study. Physics of Fluids, 2019, 31(11): 117108 doi: 10.1063/1.5124613
|
[14] |
Zhang G, Zhao W, Wan D. Moving particle semi-implicit method coupled with finite element method for hydroelastic responses of floating structures in waves. European Journal of Mechanics-B Fluids, 2022, 95: 63-82 doi: 10.1016/j.euromechflu.2022.04.005
|
[15] |
Zhang Y, Wan, D. Numerical study of interactions between waves and free rolling body by IMPS method. Computers and Fluids, 2017, 155: 124133
|
[16] |
Xie F, Zhao W, Wan D. MPS-DEM coupling method for interaction between fluid and thin elastic structures. Ocean Engineering, 2021, 236: 109449 doi: 10.1016/j.oceaneng.2021.109449
|
[17] |
Zhang G, Zha R, Wan D. MPS–FEM coupled method for 3D dam-break flows with elastic gate structures. European Journal of Mechanics-B Fluids, 2022, 94: 171-189 doi: 10.1016/j.euromechflu.2022.02.014
|
[18] |
Sun Y, Xi G, Sun Z. A fully Lagrangian method for fluid–structure interaction problems with deformable floating structure. Journal of Fluids and Structures, 2019, 90: 379-395 doi: 10.1016/j.jfluidstructs.2019.07.005
|
[19] |
Sun Z, Djidjeli K, Xing J, et al. Coupled MPS-modal superposition method for 2 D nonlinear fluid-structure interaction problems with free surface. Journal of Fluids and Structures, 2016, 61: 295-323
|
[20] |
Sun Z, Zhang G, Zong Z, et al. Numerical analysis of violent hydroelastic problems based on a mixed MPS-mode superposition method. Ocean Engineering, 2019, 179: 285-297
|
[21] |
Koshizuka S, Nobe A, Oka Y. Numerical analysis of breaking waves using the moving particle semi-implicit method. International Journal for Numerical Methods in Fluids, 1998, 26(7): 751-769 doi: 10.1002/(SICI)1097-0363(19980415)26:7<751::AID-FLD671>3.0.CO;2-C
|
[22] |
Khayyer A, Gotoh H. Development of CMPS method for accurate water-surface tracking in breaking waves. Coastal Engineering Journal, 2008, 50(2): 179-207 doi: 10.1142/S0578563408001788
|
[23] |
Tanaka M, Masunaga T. Stabilization and smoothing of pressure in MPS method by quasi-compressibility. Journal of Computational Physics, 2010, 229(11): 4279-4290 doi: 10.1016/j.jcp.2010.02.011
|
[24] |
张雨新. 改进的MPS方法及其三维并行计算研究. [博士论文]. 上海: 上海交通大学, 2014
Zhang Yuxin. Development and application of 3D parallel improved meshless MPS method. [PhD Thesis]. Shanghai: Shanghai Jiao Tong University, 2014 (in Chinese))
|
[25] |
Khayyer A, Gotoh H. Modified moving particle semi-implicit methods for the prediction of 2D wave impact pressure. Coastal Engineering, 2009, 56(4): 419-440 doi: 10.1016/j.coastaleng.2008.10.004
|
[26] |
Khayyer A, Gotoh H. A higher order Laplacian model for enhancement and stabilization of pressure calculation by the MPS method. Applied Ocean Research, 2010, 32(1): 124-131 doi: 10.1016/j.apor.2010.01.001
|
[27] |
Lee B, Park J, Kim M, et al. Step-by-step improvement of MPS method in simulating violent free-surface motions and impact-loads. Computer Methods in Applied Mechanics and Engineering, 2011, 200: 1113-1125 doi: 10.1016/j.cma.2010.12.001
|
[28] |
Zhang, Y, Wan D, Hino T. Comparative study of MPS method and level-set method for sloshing flows. Journal of Hydrodynamics, 2014, 26(4): 577-585 doi: 10.1016/S1001-6058(14)60065-2
|
[29] |
Newmark N. A Method of computation for structural dynamics. Journal of the Engineering Mechanics Division. 1959, 85(3): 67-94
|
[30] |
Turek S, Hron J. Proposal for numerical benchmarking of fluid-structure interaction between an elastic object and laminar incompressible flow//Fluid structure Interaction, Springer, 2006: 371–385
|
[31] |
Sun PN, Touze DL, Oger G, et al. An accurate FSI-SPH modeling of challenging fluid-structure interaction problems in two and three dimensions. Ocean Engineering, 2021, 211: 109552
|