Citation: | Liu Guoping, Yang Zhaoshu, He Zhongbo, Zhou Jingtao, Sun Minzheng. Design and modeling of electret vibration suppression and energy harvesting device oriented to micro-vibration signals. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(1): 169-181. DOI: 10.6052/0459-1879-22-444 |
[1] |
Li DL, Zhang Y, Wang K, et al. The experimental adaptability design and verification of the space station manipulator's joint//2021 3rd International Symposium on Robotics & Intelligent Manufacturing Technology (ISRIMT), 2021
|
[2] |
Liu W, Wang SQ. Microgravity performance evaluation for zero gravity robot in china's space station. IEEE Aerospace and Electronic Systems Magazine, 2022, 37(1): 32-42 doi: 10.1109/MAES.2021.3114057
|
[3] |
秦超. 空间望远镜微振动抑制关键技术研究. [博士论文]. 北京: 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2022
Qin Chao. Research on the key technologies of micro-vibration suppression for the space telescope. [PhD Thesis]. Beijing: University of Chinese Academy of Sciences (Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences), 2022 (in Chinese)
|
[4] |
董瑶海. 航天器微振动——理论与实践. 北京: 中国宇航出版社, 2015
Dong Yaohai Microvibration of Spacecraft-Theory and Practice. Beijing: China Astronautic Publishing House, 2015 (in Chinese)
|
[5] |
董瑶海, 周徐斌, 申军烽等. FY-4卫星微振动抑制技术研究. 上海航天, 2017, 34(4): 20-27 (Dong Yaohai, Zhou Xubin, Shen Junfeng, et al. Study on micro-vibration suppression technology of FY-4 satellite. Aerospace Shanghai, 2017, 34(4): 20-27 (in Chinese) doi: 10.19328/j.cnki.1006-1630.2017.04.003
|
[6] |
Li L, Wang L, Yuan L, et al. Micro-vibration suppression methods and key technologies for high-precision space optical instruments. Acta Astronautica, 2021, 180: 417-428 doi: 10.1016/j.actaastro.2020.12.054
|
[7] |
于济菘. 对日定向太阳翼扰振特性及其抑制技术研究. [博士论文]. 北京: 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2022
Yu Jisong. Characteristic and attenuation method research on the disturbance behavior of sun-tracking solar array. [PhD Thesis]. Beijing: University of Chinese Academy of Sciences (Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences), 2022 (in Chinese)
|
[8] |
Yang T, Zhou SX, Fang ST, et al. Nonlinear vibration energy harvesting and vibration suppression technologies: Designs, analysis, and applications. Applied Physics Reviews, 2021, 8(3): 031317
|
[9] |
Li YJ, Tao K, George B, et al. Harvesting vibration energy: technologies and challenges. IEEE Industrial Electronics Magazine, 2021, 15(1): 30-39 doi: 10.1109/MIE.2020.2978219
|
[10] |
Xiao YJ, Guo C, Zeng QD, et al. Electret nanogenerators for self-powered, flexible electronic pianos. Sustainability, 2021, 13(8): 4142
|
[11] |
陈楠, 刘京睿, 魏廷存. 面向压电振动能量俘获的电能管理电路综述. 力学学报, 2021, 53(11): 2928-2940 (Chen Nan, Liu Jingrui, Wei Tingcun. Review of energy management circuits for piezoelectric vibration energy harvesters. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(11): 2928-2940 (in Chinese) doi: 10.6052/0459-1879-21-440
|
[12] |
Muscat A, Bhattacharya S, Zhu Y. Electromagnetic vibrational energy harvesters: a review. Sensors (Basel), 2022, 22(15): 5555
|
[13] |
Pan JN, Qin WY, Zhao CY, et al. Hybrid vibration energy harvesting based on piezoelectric polyline beams with electret coupling. Journal of Intelligent Material Systems and Structures, 2021, 33(2): 319-329
|
[14] |
Tao K, Yi HP, Yang Y, et al. Origami-inspired electret-based triboelectric generator for biomechanical and ocean wave energy harvesting. Nano Energy, 2020, 67: 104197
|
[15] |
Yan B, Zhou SX, Zhao CX, et al. Electromagnetic Energy harvester for vibration control of space rack: modeling, optimization, and analysis. Journal of Aerospace Engineering, 2019, 32(1): 04018126
|
[16] |
Yang T, Cao QJ, Hao ZF. A novel nonlinear mechanical oscillator and its application in vibration isolation and energy harvesting. Mechanical Systems and Signal Processing, 2021, 155: 107636
|
[17] |
Fang ST, Chen KY, Xing JT, et al. Tuned bistable nonlinear energy sink for simultaneously improved vibration suppression and energy harvesting. International Journal of Mechanical Sciences, 2021, 212: 106838
|
[18] |
Zhang YQ, Yang T, Du HF, et al. Wideband vibration isolation and energy harvesting based on a coupled piezoelectric-electromagnetic structure. Mechanical Systems and Signal Processing, 2023, 184: 109689
|
[19] |
赵龙, 陆泽琦, 丁虎等. 低频振动隔离和能量采集双功能超材料. 力学学报, 2021, 53(11): 2972 (Zhao Long, Lu Zeqi, Ding Hu, et al. Low-frequency vibration isolation and energy harvesting simultaneously implemented by a metamaterial with local resonance. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(11): 2972 (in Chinese) doi: 10.6052/0459-1879-21-471
|
[20] |
Cao DX, Gao YH, Hu WH. Modeling and power performance improvement of a piezoelectric energy harvester for low-frequency vibration environments. Acta Mechanica Sinica, 2019, 35(4): 894-911 doi: 10.1007/s10409-019-00852-3
|
[21] |
Cao DX, Guo XY, Hu WH. A novel low-frequency broadband piezoelectric energy harvester combined with a negative stiffness vibration isolator. Journal of Intelligent Material Systems and Structures, 2019, 30(7): 1105-1114 doi: 10.1177/1045389X19829835
|
[22] |
Hu GB, Tang LH, Das R. Internally coupled metamaterial beam for simultaneous vibration suppression and low frequency energy harvesting. Journal of Applied Physics, 2018, 123(5): 055107
|
[23] |
Mofidian S, Bardaweel H. A dual-purpose vibration isolator energy harvester: experiment and model. Mechanical Systems and Signal Processing, 2019, 118: 360-376 doi: 10.1016/j.ymssp.2018.08.054
|
[24] |
杨涛, 周生喜, 曹庆杰等. 非线性振动能量俘获技术的若干进展. 力学学报, 2021, 53(11): 2894-2909 (Yang Tao, Zhou Shengxi, Cao Qingjie, et al. Some advances in nonlinear vibration energy harvesting technology. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(11): 2894-2909 (in Chinese) doi: 10.6052/0459-1879-21-474
|
[25] |
Yang ZS, Tang LH, Tao K, et al. A broadband electret-based vibrational energy harvester using soft magneto-sensitive elastomer with asymmetrical frequency response profile. Smart Materials and Structures, 2019, 28(10): 10LT02
|
[26] |
Li G, Liu GL, He WC, et al. Miura folding based charge-excitation triboelectric nanogenerator for portable power supply. Nano Research, 2021, 14(11): 4204-4210 doi: 10.1007/s12274-021-3401-4
|
[27] |
Tao K, Chen Z, Yi H, et al. Hierarchical honeycomb-structured electret/triboelectric nanogenerator for biomechanical and morphing wing energy harvesting. Nano-Micro Letters, 2021, 13(1): 123 doi: 10.1007/s40820-021-00644-0
|
[28] |
Beeby S, Tudor MJ, Torah RN, et al. Experimental comparison of macro and micro scale electromagnetic vibration powered generators. Microsystem Technologies, 2007, 13(11-12): 1647-1653 doi: 10.1007/s00542-006-0374-x
|
[29] |
Cai QL, Zhu SY. The nexus between vibration-based energy harvesting and structural vibration control: a comprehensive review. Renewable and Sustainable Energy Reviews, 2022, 155: 111920
|
[30] |
Safaei M, Sodano HA, Anton SR. A review of energy harvesting using piezoelectric materials: state-of-the-art a decade later (2008–2018). Smart Materials and Structures, 2019, 28(11): 113001
|
[31] |
Nijmeijer H, Mestrom RMC, Fey RHB, et al. Design and numerical analysis of an electrostatic energy harvester with impact for frequency up-conversion. Journal of Computational and Nonlinear Dynamics, 2020, 15(5): 051005
|
[32] |
Yang ZS, Tang LH, Tao K, et al. Modelling and validation of electret-based vibration energy harvesters in view of charge migration. International Journal of Precision Engineering and Manufacturing-Green Technology, 2019, 8(1): 113-123
|
[33] |
Westby ER, Halvorsen E. Design and modeling of a patterned-electret-based energy harvester for tire pressure monitoring systems. IEEE/ASME Transactions On Mechatronics, 2012, 17(5): 995-1005 doi: 10.1109/TMECH.2011.2151203
|
[34] |
Perez M, Boisseau S, Gasnier P, et al. An electret-based aeroelastic flutter energy harvester. Smart Materials and Structures, 2015, 24(3): 035004 doi: 10.1088/0964-1726/24/3/035004
|
[35] |
Yang SS, Chu Y, Dong KK, et al. Contact-separation mode electret generator supported by magnets//2021 IEEE 20 th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS), 2021
|
[36] |
张义民. 机械振动. 北京: 清华大学出版社, 2007
Zhang Yimin. Mechanical Vibration. Bejing: Tsinghua University Press, 2007 (in Chinese)
|
[37] |
Yang ZS. Development of low-frequency broadband vibration energy harvester based on soft magneto-sensitive elastomer. [PhD Thesis]. The University of Auckland, 2019
|
[1] | Zhang Ye, Wang Junlei. FLOW-INDUCED VIBRATION ENERGY HARVESTING BASED ON FINNED METASURFACE BLUFF BODY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(10): 2199-2216. DOI: 10.6052/0459-1879-23-298 |
[2] | Chen Tingting, Wang Kai, Cheng Li, Zhou Jiaxi. RESEARCH ON QUASI-ZERO-STIFFNESS-ENABLED PIEZOELECTRIC LOW-FREQUENCY VIBRATION ENERGY HARVESTING METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(10): 2156-2167. DOI: 10.6052/0459-1879-23-315 |
[3] | Tang Xiaofeng, Feng Huanhuan, Pan Ming, Dong Yuhong. EFFECT OF ELECTROSTATIC FORCE ON SPATIAL DISTRIBUTION AND INTERPHASE ENERGY TRANSPORT IN RADIANT HEATED PARTICLE-LADEN TURBULENT CHANNEL FLOW[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(6): 1217-1227. DOI: 10.6052/0459-1879-23-163 |
[4] | Li Haitao, Cao Fan, Ren He, Ding Hu, Chen Liqun. THE EFFECT OF GEOMETRIC FEATURE OF BLUFF BODY ON FLOW-INDUCED VIBRATION ENERGY HARVESTING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(11): 3007-3015. DOI: 10.6052/0459-1879-21-438 |
[5] | Zhao Long, Lu Zeqi, Ding Hu, Chen Liqun. LOW-FREQUENCY VIBRATION ISOLATION AND ENERGY HARVESTING SIMULTANEOUSLY IMPLEMENTED BY A METAMATERIAL WITH LOCAL RESONANCE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(11): 2972-2983. DOI: 10.6052/0459-1879-21-471 |
[6] | Meng Ying, Ding Hu, Chen Liqun. VIBRATION ANALYSIS OF A PIEZOELECTRIC CIRCULAR PLATE ENERGY HARVESTER CONSIDERING A PROOF MASS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(11): 2950-2960. DOI: 10.6052/0459-1879-21-441 |
[7] | Yang Tao, Zhou Shengxi, Cao Qingjie, Zhang Wenming, Chen Liqun. SOME ADVANCES IN NONLINEAR VIBRATION ENERGY HARVESTING TECHNOLOGY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(11): 2894-2909. DOI: 10.6052/0459-1879-21-474 |
[8] | Xu Zhaodong, Xu Chao, Xu Yeshou. MICROSCOPIC MOLECULAR CHAIN STRUCTURE MODEL OF VISCOELASTIC DAMPER UNDER MICRO-VIBRATION EXCITATIONS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3): 675-683. DOI: 10.6052/0459-1879-15-394 |
[9] | Haijun Li, Wanlin Guo. Gigahertz oscillation of coaxial cylindrical tubes driven by Casimir and electrostatic forces[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(4): 533-537. DOI: 10.6052/0459-1879-2007-4-2006-381 |
[10] | The effect of electrostatic force on the evolution of saltaing population of wind-blown grains[J]. Chinese Journal of Theoretical and Applied Mechanics, 2006, 38(2): 145-152. DOI: 10.6052/0459-1879-2006-2-2005-057 |