Citation: | Wei Zhigang, Chen Haibo, Luo Zhonglong, Hu Wenfeng. A new helical tube model for the elasticity of rubber-like materials. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(2): 417-432 doi: 10.6052/0459-1879-22-435 |
[1] |
Zhong M, Wang R, Kawamoto K, et al. Quantifying the impact of molecular defects on polymer network elasticity. Science, 2016, 353(6305): 1264 doi: 10.1126/science.aag0184
|
[2] |
Sussman T, Bathe KJ. A model of incompressible isotropic hyperelastic material behavior using spline interpolations of tension-compression test data. Communications in Numerical Methods in Engineering, 2009, 25: 53-63 doi: 10.1002/cnm.1105
|
[3] |
Treloar LRG. The elasticity of a network of long-chain molecules-I. Transactions of the Faraday Society, 1943, 39: 36-41 doi: 10.1039/tf9433900036
|
[4] |
Rivlin RS. Large elastic deformations of isotropic materials. IV. Further developments of the general theory. Philosophy of Transaction of Royal Society of Lond. Series A Mathematical Physical Science, 1948, 241(835): 379-397
|
[5] |
Ogden RW. Large deformation isotropic elasticity-on the correlation of theory and experiment for incompressible rubberlike solids. Proceeding of the Royal Society of Lond. A Mathmatical Physical & Engineering Science, 1972, 326(1567): 565-584
|
[6] |
Yeoh OH. Some forms of the strain energy function for rubber. Rubber Chemistry and Technology, 1993, 66(5): 754-771 doi: 10.5254/1.3538343
|
[7] |
Gent AN. A new constitutive relation for rubber. Rubber Chemistry and Technology, 1996, 69(1): 59-61 doi: 10.5254/1.3538357
|
[8] |
Shariff MHBM. Strain energy function for filled and unfilled rubberlike material. Rubber Chemistry and Technology, 2000, 73(1): 1-18 doi: 10.5254/1.3547576
|
[9] |
Carroll MM. A strain energy function for vulcanized rubbers. Journal of Elasticity, 2011, 103(2): 173-187 doi: 10.1007/s10659-010-9279-0
|
[10] |
Khajehsaeid H, Arghavani J, Naghdabadi R. A hyperelastic constitutive model for rubber-like materials. European Journal of Mechanics A/Solids, 2013, 38: 144-151 doi: 10.1016/j.euromechsol.2012.09.010
|
[11] |
Mansouri MR, Darijani HD. Constitutive modeling of isotropic hyperelastic materials in an exponential framework using a self-contained approach. International. Journal of Solids and Structures, 2014, 51: 4316-4326 doi: 10.1016/j.ijsolstr.2014.08.018
|
[12] |
Kuhn W, Molekülgröße BZ. statistischer molekülgestalt und elastischen eigenschaften hochpolymerer stoffe. Kolloid-Z, 1936, 76: 258-271
|
[13] |
杨小震. 链分子的构象弹性理论. 中国科学: B辑, 2001, 31(1): 11 (Yang Xiaozhen. Conformational elastic theory of chain molecules. Science in China (Series B)
|
[14] |
Kuhn W, Grün F. Beziehungen zwischen elastischen Konstanten und Dehnungsdoppelbrechung hochelastischer stoffe. Kolloid-Z, 1942, 101: 248-271
|
[15] |
James HM, Guth E. Theory of elastic properties of rubber. Journal of Chemical Physics, 1943, 11: 455-481 doi: 10.1063/1.1723785
|
[16] |
James, HM. Statistical properties of networks of flexible chains. Journal of Chemical Physics, 1947, 15: 651-668 doi: 10.1063/1.1746624
|
[17] |
Miehe C, Göktepe S. Lulei F. A micro–macro approach to rubber-like materials–part I: the non-affine micro-sphere model of rubber elasticity. Journal of the Mechanics and Physics of Solids, 2004, 52(11): 2617-2660
|
[18] |
Nishi K, Fujii K, Chung U, et al. Experimental observation of two features unexpected from the classical theories of rubber elasticity. Physical Review Letters, 2017, 119: 267801-1-5 doi: 10.1103/PhysRevLett.119.267801
|
[19] |
Gusev AA. Numerical estimates of the topological effects in the elasticity of gaussian polymer networks and their exact theoretical description. Macromolecules, 2019, 52: 3244-3251 doi: 10.1021/acs.macromol.9b00262
|
[20] |
Arruda EM, Boyce MC. A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials. Journal of the Mechanics and Physics of Solids, 1993, 41(2): 389-412 doi: 10.1016/0022-5096(93)90013-6
|
[21] |
Fu B, Yang X, Li Q. A network decomposition model for rubber-like materials considering topological constraints. Acta Mechanica Solida Sinica, 2018, 31(6): 785-793 doi: 10.1007/s10338-018-0068-9
|
[22] |
Treloar LRG. The photoelastic properties of short-chain molecular networks. Transactions of the Faraday Society, 1954, 50: 881 doi: 10.1039/tf9545000881
|
[23] |
Wu PD, Van Der Giessen E. On improved network models for rubber elasticity and their applications to orientation hardening in glassy polymers. Journal of the Mechanics and Physics of Solids, 1993, 41: 427-456 doi: 10.1016/0022-5096(93)90043-F
|
[24] |
Beatty MF. An average-stretch full-network model for rubber elasticity. Journal of Elasticity, 2003, 70: 65-86 doi: 10.1023/B:ELAS.0000005553.38563.91
|
[25] |
Aydogdu AB, Loos K, Johlitz M, et al. A new concept for the representative directions method: Directionalisation of first and second invariant based hyperelastic models. International Journal of Solids and Structures, 2021, 222-223: 111017 doi: 10.1016/j.ijsolstr.2021.03.004
|
[26] |
陈晓红. 高聚物模糊随机网络统计力学. 中国科学(A辑), 1995, 25(5): 505-513 (Chen Xiaohong. Statistical mechanics of polymer fuzzy stochastic networks. Science in China (Series A)
|
[27] |
Rubinstein M, Panyukov S. Elasticity of polymer networks. Macromolecules, 2002, 35: 6670-6686 doi: 10.1021/ma0203849
|
[28] |
Doi M, Edwards SF. The Theory of Polymer Dynamics. Oxford: Clarendon Press, 1986
|
[29] |
Khiêm VN, Itskov M. Analytical network-averaging of the tube model: Rubber elasticity. Journal of the Mechanics and Physics of Solids, 2016, 95: 254-269 doi: 10.1016/j.jmps.2016.05.030
|
[30] |
Diani J, Tallec PL. A fully equilibrated microsphere model with damage for rubberlike materials. Journal of the Mechanics and Physics of Solids, 2019, 124: 702-713 doi: 10.1016/j.jmps.2018.11.021
|
[31] |
Darabi E, Itskov M. A generalized tube model of rubber elasticity. Soft Matter, 2021, 17(6): 1675-1684 doi: 10.1039/D0SM02055A
|
[32] |
Steinmann P, Hossain M, Possart G. Hyperelastic models for rubber-like materials: consistent tangent operators and suitability for Treloar’s data. Archive of Applied Mechanics, 2012, 82(9): 1183-1217 doi: 10.1007/s00419-012-0610-z
|
[33] |
Ilg P, Karlin IV, Succi S. Super symmetry solution for finitely extensible dumbbell model. Europhysics Letters, 2000, 51(3): 355-360
|
[34] |
Edwards SF. The statistical mechanics of polymerized material. Proceding of Physics Society (London)
|
[35] |
Wei Z, Yang S. An elastic model for rubber-like materials based on a force-equivalent network. European Journal of Mechanics A/Solids, 2020, 84: 104078 doi: 10.1016/j.euromechsol.2020.104078
|
[36] |
Drucker DC. On the postulate of stability of material in the mechanics of continua. MeWtanika. Period. Sbornik Perevodov Invsts Srarei, 1964, 3: 115-128
|
[37] |
高梦霓, 赵亚溥. 若干弹性力学问题解的唯一性定理. 中国科学:物理学、力学、天文学, 2020, 50(8): 084601 (Gao Mengnin, Zhao Yapu. Some uniqueness theorems of solutions for the problems of elasticity. Scientia Sinica Physica,Mechanica &Astronomica, 2020, 50(8): 084601 (in Chinese)
|
[38] |
Kawabata S, Matsuda M, Tei K, et al. Experimental survey of the strain energy density function of isoprene rubber vulcanizate. Macromolecules, 1981, 14: 154-162 doi: 10.1021/ma50002a032
|
[39] |
Treloar LRG. Stress–strain data for vulcanised rubber under various types of deformation. Transactions of the Faraday Society, 1944, 40: 59-70 doi: 10.1039/tf9444000059
|
[40] |
Meunier L, Chagnon G, Favier D, et al. Mechanical experimental characterisation and numerical modelling of an unfilled silicone rubber. Polymer Test, 2008, 27(6): 765-777 doi: 10.1016/j.polymertesting.2008.05.011
|
[41] |
Zhao F. Continuum constitutive modeling for isotropic hyperelastic Materials. Advances in Pure Mathmatics, 2016, 6: 571-582
|
[42] |
James AG, Green A. Simpson GM, Strain energy functions of rubber I. characterization of gum vulcanizates. Journal of Applied Polymer Science, 1975, 19: 2033-2058
|
[43] |
Kawabata S, Kawai H. Strain energy density functions of rubber vulcanizates from biaxial extension. Advances in Polymer Science, 1977, 24: 89-124
|
[44] |
Davidson JD, Goulbourne NC. A nonaffine network model for elastomers undergoing finite deformations. Journal of the Mechanics and Physics of Solids, 2013, 61: 1784-1797 doi: 10.1016/j.jmps.2013.03.009
|
[45] |
Xiang Y, Zhong D, Wang P, et al. A general constitutive model of soft elastomers. Journal of the Mechanics and Physics of Solids, 2018, 117: 110-122 doi: 10.1016/j.jmps.2018.04.016
|
[46] |
Dal H, Gültekin O, Açıkgöz K. An extended eight-chain model for hyperelastic and fifinite viscoelastic response of rubberlike materials: Theory, experiments and numerical aspects. Journal of the Mechanics and Physics of Solids, 2020, 145: 104159 doi: 10.1016/j.jmps.2020.104159
|
[47] |
Hossain M, Steinmann P. More hyperelastic models for rubber-like materials: consistent tangent operators and comparative study. Journal of the Mechanical Behavior of Materials, 2013, 22(1-2): 27-50 doi: 10.1515/jmbm-2012-0007
|
[48] |
Xiang Y, Zhong D, Rudykh S, et al. A review of physically-based and thermodynamically-based constitutive models for soft materials. Journal of Applied Mechanics, 2020, 87: 110801 doi: 10.1115/1.4047776
|
[49] |
Anssari-Benam A, Bucchi A. A generalised neo-Hookean strain energy function for application to the finite deformation of elastomers. International Journal of Nonlinear Mechanics, 2021, 128: 103626 doi: 10.1016/j.ijnonlinmec.2020.103626
|
[50] |
He H, Zhang Q, Zhang Y, et al. A comparative study of 85 hyperelastic constitutive models for both unfilled rubber and highly filled rubber nanocomposite material. Nano Materials Science, 2022, 4(2): 64-82
|
[51] |
魏志刚, 陈海波. 一种新的橡胶材料弹性本构模型. 力学学报, 2019, 51(2): 473-483 (Wei Zhigang, Chen Haibo. A new elastic model for rubber-like materials. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 473-483 (in Chinese) doi: 10.6052/0459-1879-18-303
|
[52] |
Ogden RW, Saccomandi G, Sgura I. Fitting hyperelastic models to experimental data. Computational Mechanics, 2004, 34(6): 484-502 doi: 10.1007/s00466-004-0593-y
|
[53] |
丁智平, 杨荣华, 黄友剑等. 基于连续损伤模型橡胶弹性减振元件疲劳寿命分析. 机械工程学报, 2014, 50(10): 80-86
Ding Zhiping, Yang Ronghua, Huang Youjian, et al. Fatigue life analysis of rubber vibration damper based on continuum damage model. Journal of Mechanical. Engineering, 2014, 50(10): 80-86 (in Chinese)
|
[54] |
Heuillet P, Dugautier L. Modelisation du comportement hyper_elastique des caoutchoucs et elastomeres thermoplastiques, compacts on cellulaires. Genie Mecanique des Caoutchoucs et des _Elastomeres Thermoplastiques, 1997
|
[55] |
Fujikawa M, Maeda N, Yamabe J, et al. Determining stress–strain in rubber with in-plane biaxial tensile tester. Experimental Mechanics, 2014, 54: 1639-1649 doi: 10.1007/s11340-014-9942-7
|