EI、Scopus 收录
Volume 55 Issue 2
Feb.  2023
Turn off MathJax
Article Contents
Wei Zhigang, Chen Haibo, Luo Zhonglong, Hu Wenfeng. A new helical tube model for the elasticity of rubber-like materials. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(2): 417-432 doi: 10.6052/0459-1879-22-435
Citation: Wei Zhigang, Chen Haibo, Luo Zhonglong, Hu Wenfeng. A new helical tube model for the elasticity of rubber-like materials. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(2): 417-432 doi: 10.6052/0459-1879-22-435


doi: 10.6052/0459-1879-22-435
  • Received Date: 2022-09-19
  • Accepted Date: 2022-12-17
  • Available Online: 2022-12-21
  • Publish Date: 2023-02-18
  • One of the biggest challenges for soft materials is to establish statistical mechanical models to correctly describe the relationship between its microstructure and macroscopic mechanical properties, and the statistical models for rubber-like materials still have some imperfections. Based on the macroscopically isotropic, continuous uniform and incompressible properties of rubber-like materials, combined with a non-Gaussian statistical model for molecular chains, a new elastic model for rubber material is proposed. The force transfer path between the corresponding points on the representative volume element is described by a subnetwork constrained to a region as a spiral helical tube, whose surfaces all deform affinely with the macroscopic deformation. The sub-network consists of molecular chains or chain segments linked end-to-end with random orientation and length. Hence, the constitutive model describing the macroscopic mechanical characteristics of the material is derived from the entropy of the subnetwork. A large number of test data were used to fit the constitutive model, which show that the model has very good accuracy. Especially, the proposed model with two parameters show very high reliability that it gives good predictions of the three basic test with the parameters derived from data-fitting with uniaxial tension data only. With the proposed curved affine tube confinement, this model can explain the incompressible properties of the material from the microstructure scale, overcome the shortcoming of straight tube model, and build a new model for the correlation between the stochastic at the micro scale and the uniform at the macro scale.


  • loading
  • [1]
    Zhong M, Wang R, Kawamoto K, et al. Quantifying the impact of molecular defects on polymer network elasticity. Science, 2016, 353(6305): 1264 doi: 10.1126/science.aag0184
    Sussman T, Bathe KJ. A model of incompressible isotropic hyperelastic material behavior using spline interpolations of tension-compression test data. Communications in Numerical Methods in Engineering, 2009, 25: 53-63 doi: 10.1002/cnm.1105
    Treloar LRG. The elasticity of a network of long-chain molecules-I. Transactions of the Faraday Society, 1943, 39: 36-41 doi: 10.1039/tf9433900036
    Rivlin RS. Large elastic deformations of isotropic materials. IV. Further developments of the general theory. Philosophy of Transaction of Royal Society of Lond. Series A Mathematical Physical Science, 1948, 241(835): 379-397
    Ogden RW. Large deformation isotropic elasticity-on the correlation of theory and experiment for incompressible rubberlike solids. Proceeding of the Royal Society of Lond. A Mathmatical Physical & Engineering Science, 1972, 326(1567): 565-584
    Yeoh OH. Some forms of the strain energy function for rubber. Rubber Chemistry and Technology, 1993, 66(5): 754-771 doi: 10.5254/1.3538343
    Gent AN. A new constitutive relation for rubber. Rubber Chemistry and Technology, 1996, 69(1): 59-61 doi: 10.5254/1.3538357
    Shariff MHBM. Strain energy function for filled and unfilled rubberlike material. Rubber Chemistry and Technology, 2000, 73(1): 1-18 doi: 10.5254/1.3547576
    Carroll MM. A strain energy function for vulcanized rubbers. Journal of Elasticity, 2011, 103(2): 173-187 doi: 10.1007/s10659-010-9279-0
    Khajehsaeid H, Arghavani J, Naghdabadi R. A hyperelastic constitutive model for rubber-like materials. European Journal of Mechanics A/Solids, 2013, 38: 144-151 doi: 10.1016/j.euromechsol.2012.09.010
    Mansouri MR, Darijani HD. Constitutive modeling of isotropic hyperelastic materials in an exponential framework using a self-contained approach. International. Journal of Solids and Structures, 2014, 51: 4316-4326 doi: 10.1016/j.ijsolstr.2014.08.018
    Kuhn W, Molekülgröße BZ. statistischer molekülgestalt und elastischen eigenschaften hochpolymerer stoffe. Kolloid-Z, 1936, 76: 258-271
    杨小震. 链分子的构象弹性理论. 中国科学: B辑, 2001, 31(1): 11 (Yang Xiaozhen. Conformational elastic theory of chain molecules. Science in China (Series B), 2001, 31(1): 11 (in Chinese)
    Kuhn W, Grün F. Beziehungen zwischen elastischen Konstanten und Dehnungsdoppelbrechung hochelastischer stoffe. Kolloid-Z, 1942, 101: 248-271
    James HM, Guth E. Theory of elastic properties of rubber. Journal of Chemical Physics, 1943, 11: 455-481 doi: 10.1063/1.1723785
    James, HM. Statistical properties of networks of flexible chains. Journal of Chemical Physics, 1947, 15: 651-668 doi: 10.1063/1.1746624
    Miehe C, Göktepe S. Lulei F. A micro–macro approach to rubber-like materials–part I: the non-affine micro-sphere model of rubber elasticity. Journal of the Mechanics and Physics of Solids, 2004, 52(11): 2617-2660
    Nishi K, Fujii K, Chung U, et al. Experimental observation of two features unexpected from the classical theories of rubber elasticity. Physical Review Letters, 2017, 119: 267801-1-5 doi: 10.1103/PhysRevLett.119.267801
    Gusev AA. Numerical estimates of the topological effects in the elasticity of gaussian polymer networks and their exact theoretical description. Macromolecules, 2019, 52: 3244-3251 doi: 10.1021/acs.macromol.9b00262
    Arruda EM, Boyce MC. A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials. Journal of the Mechanics and Physics of Solids, 1993, 41(2): 389-412 doi: 10.1016/0022-5096(93)90013-6
    Fu B, Yang X, Li Q. A network decomposition model for rubber-like materials considering topological constraints. Acta Mechanica Solida Sinica, 2018, 31(6): 785-793 doi: 10.1007/s10338-018-0068-9
    Treloar LRG. The photoelastic properties of short-chain molecular networks. Transactions of the Faraday Society, 1954, 50: 881 doi: 10.1039/tf9545000881
    Wu PD, Van Der Giessen E. On improved network models for rubber elasticity and their applications to orientation hardening in glassy polymers. Journal of the Mechanics and Physics of Solids, 1993, 41: 427-456 doi: 10.1016/0022-5096(93)90043-F
    Beatty MF. An average-stretch full-network model for rubber elasticity. Journal of Elasticity, 2003, 70: 65-86 doi: 10.1023/B:ELAS.0000005553.38563.91
    Aydogdu AB, Loos K, Johlitz M, et al. A new concept for the representative directions method: Directionalisation of first and second invariant based hyperelastic models. International Journal of Solids and Structures, 2021, 222-223: 111017 doi: 10.1016/j.ijsolstr.2021.03.004
    陈晓红. 高聚物模糊随机网络统计力学. 中国科学(A辑), 1995, 25(5): 505-513 (Chen Xiaohong. Statistical mechanics of polymer fuzzy stochastic networks. Science in China (Series A), 1995, 25(5): 505-513 (in Chinese)
    Rubinstein M, Panyukov S. Elasticity of polymer networks. Macromolecules, 2002, 35: 6670-6686 doi: 10.1021/ma0203849
    Doi M, Edwards SF. The Theory of Polymer Dynamics. Oxford: Clarendon Press, 1986
    Khiêm VN, Itskov M. Analytical network-averaging of the tube model: Rubber elasticity. Journal of the Mechanics and Physics of Solids, 2016, 95: 254-269 doi: 10.1016/j.jmps.2016.05.030
    Diani J, Tallec PL. A fully equilibrated microsphere model with damage for rubberlike materials. Journal of the Mechanics and Physics of Solids, 2019, 124: 702-713 doi: 10.1016/j.jmps.2018.11.021
    Darabi E, Itskov M. A generalized tube model of rubber elasticity. Soft Matter, 2021, 17(6): 1675-1684 doi: 10.1039/D0SM02055A
    Steinmann P, Hossain M, Possart G. Hyperelastic models for rubber-like materials: consistent tangent operators and suitability for Treloar’s data. Archive of Applied Mechanics, 2012, 82(9): 1183-1217 doi: 10.1007/s00419-012-0610-z
    Ilg P, Karlin IV, Succi S. Super symmetry solution for finitely extensible dumbbell model. Europhysics Letters, 2000, 51(3): 355-360
    Edwards SF. The statistical mechanics of polymerized material. Proceding of Physics Society (London) , 1967, 92(1): 9
    Wei Z, Yang S. An elastic model for rubber-like materials based on a force-equivalent network. European Journal of Mechanics A/Solids, 2020, 84: 104078 doi: 10.1016/j.euromechsol.2020.104078
    Drucker DC. On the postulate of stability of material in the mechanics of continua. MeWtanika. Period. Sbornik Perevodov Invsts Srarei, 1964, 3: 115-128
    高梦霓, 赵亚溥. 若干弹性力学问题解的唯一性定理. 中国科学:物理学、力学、天文学, 2020, 50(8): 084601 (Gao Mengnin, Zhao Yapu. Some uniqueness theorems of solutions for the problems of elasticity. Scientia Sinica Physica,Mechanica &Astronomica, 2020, 50(8): 084601 (in Chinese)
    Kawabata S, Matsuda M, Tei K, et al. Experimental survey of the strain energy density function of isoprene rubber vulcanizate. Macromolecules, 1981, 14: 154-162 doi: 10.1021/ma50002a032
    Treloar LRG. Stress–strain data for vulcanised rubber under various types of deformation. Transactions of the Faraday Society, 1944, 40: 59-70 doi: 10.1039/tf9444000059
    Meunier L, Chagnon G, Favier D, et al. Mechanical experimental characterisation and numerical modelling of an unfilled silicone rubber. Polymer Test, 2008, 27(6): 765-777 doi: 10.1016/j.polymertesting.2008.05.011
    Zhao F. Continuum constitutive modeling for isotropic hyperelastic Materials. Advances in Pure Mathmatics, 2016, 6: 571-582
    James AG, Green A. Simpson GM, Strain energy functions of rubber I. characterization of gum vulcanizates. Journal of Applied Polymer Science, 1975, 19: 2033-2058
    Kawabata S, Kawai H. Strain energy density functions of rubber vulcanizates from biaxial extension. Advances in Polymer Science, 1977, 24: 89-124
    Davidson JD, Goulbourne NC. A nonaffine network model for elastomers undergoing finite deformations. Journal of the Mechanics and Physics of Solids, 2013, 61: 1784-1797 doi: 10.1016/j.jmps.2013.03.009
    Xiang Y, Zhong D, Wang P, et al. A general constitutive model of soft elastomers. Journal of the Mechanics and Physics of Solids, 2018, 117: 110-122 doi: 10.1016/j.jmps.2018.04.016
    Dal H, Gültekin O, Açıkgöz K. An extended eight-chain model for hyperelastic and fifinite viscoelastic response of rubberlike materials: Theory, experiments and numerical aspects. Journal of the Mechanics and Physics of Solids, 2020, 145: 104159 doi: 10.1016/j.jmps.2020.104159
    Hossain M, Steinmann P. More hyperelastic models for rubber-like materials: consistent tangent operators and comparative study. Journal of the Mechanical Behavior of Materials, 2013, 22(1-2): 27-50 doi: 10.1515/jmbm-2012-0007
    Xiang Y, Zhong D, Rudykh S, et al. A review of physically-based and thermodynamically-based constitutive models for soft materials. Journal of Applied Mechanics, 2020, 87: 110801 doi: 10.1115/1.4047776
    Anssari-Benam A, Bucchi A. A generalised neo-Hookean strain energy function for application to the finite deformation of elastomers. International Journal of Nonlinear Mechanics, 2021, 128: 103626 doi: 10.1016/j.ijnonlinmec.2020.103626
    He H, Zhang Q, Zhang Y, et al. A comparative study of 85 hyperelastic constitutive models for both unfilled rubber and highly filled rubber nanocomposite material. Nano Materials Science, 2022, 4(2): 64-82
    魏志刚, 陈海波. 一种新的橡胶材料弹性本构模型. 力学学报, 2019, 51(2): 473-483 (Wei Zhigang, Chen Haibo. A new elastic model for rubber-like materials. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 473-483 (in Chinese) doi: 10.6052/0459-1879-18-303
    Ogden RW, Saccomandi G, Sgura I. Fitting hyperelastic models to experimental data. Computational Mechanics, 2004, 34(6): 484-502 doi: 10.1007/s00466-004-0593-y
    丁智平, 杨荣华, 黄友剑等. 基于连续损伤模型橡胶弹性减振元件疲劳寿命分析. 机械工程学报, 2014, 50(10): 80-86

    Ding Zhiping, Yang Ronghua, Huang Youjian, et al. Fatigue life analysis of rubber vibration damper based on continuum damage model. Journal of Mechanical. Engineering, 2014, 50(10): 80-86 (in Chinese)
    Heuillet P, Dugautier L. Modelisation du comportement hyper_elastique des caoutchoucs et elastomeres thermoplastiques, compacts on cellulaires. Genie Mecanique des Caoutchoucs et des _Elastomeres Thermoplastiques, 1997
    Fujikawa M, Maeda N, Yamabe J, et al. Determining stress–strain in rubber with in-plane biaxial tensile tester. Experimental Mechanics, 2014, 54: 1639-1649 doi: 10.1007/s11340-014-9942-7
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(26)  / Tables(6)

    Article Metrics

    Article views (239) PDF downloads(82) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint