EI、Scopus 收录
中文核心期刊
Turn off MathJax
Article Contents
Liu Xiyan, Luo Kai, Yuan Xulong, Ren Wei. Influence of expansion sterns on the flatting trajectory characteristics of a trans-media vehicle during high speed water entry. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(2): 1-12 doi: 10.6052/0459-1879-22-427
Citation: Liu Xiyan, Luo Kai, Yuan Xulong, Ren Wei. Influence of expansion sterns on the flatting trajectory characteristics of a trans-media vehicle during high speed water entry. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(2): 1-12 doi: 10.6052/0459-1879-22-427

INFLUENCE OF EXPANSION STERNS ON THE FLATTING TRAJECTORY CHARACTERISTICS OF A TRANS-MEDIA VEHICLE DURING HIGH SPEED WATER ENTRY

doi: 10.6052/0459-1879-22-427
  • Received Date: 2022-09-13
  • Accepted Date: 2022-11-25
  • Available Online: 2022-11-26
  • The expansion stern is an important factor affecting the flatting trajectory and its stability of a trans-media vehicle during high speed water entry and turning flat process. In this paper, based on the fluid volume multiphase flow model and dynamic mesh technology, the coupling calculation method of multiphase flow field and trajectory of the trans-media supercavitating vehicle entering water at high speed is established. The accuracy and applicability of the numerical calculation method are verified by the experiments. Through the numerical simulation study on the high speed water entry and turning flat process of the trans-media vehicle, the influence of the expansion stern on the cavity development morphology, hydrodynamic characteristics and trajectory characteristics of the vehicle during the water entry and turning flat process is obtained, and the influence of the cone angle of expansion sterns on the flatting trajectory during high speed water entry is analyzed. The results show that when the vehicle without the expansion stern entering water and turning flat under the different preset rudder angles, the angle of attack increases continuously, eventually leading to the divergence of the flatting trajectory. After the vehicle with the expansion stern entering water, the recovery moment is formed when the expansion stern is wetted, and the stable flatting trajectory is obtained. The vehicles with different expansion stern cone angles (1.5°, 6°, 8°) have formed three different kinds of trajectory characteristics: stable planing, single-sided tail-slapping and double-sided tail-slapping, and all of them can achieve stable flatting trajectory. The principle of stable planing trajectory is the dynamic balance under the coupling effect of the preset rudder angle and expansion stern planing. This trajectory has the smallest comprehensive drag coefficient, the highest flatting efficiency and the smallest dynamic load, which is an ideal flatting trajectory form for the trans-media vehicle during high speed water entry.

     

  • loading
  • [1]
    何肇雄, 郑震山, 马东立等. 国外跨介质飞行器发展历程及启示. 舰船科学技术, 2016, 38(9): 152-157 (He Zhaoxiong, Zheng Zhenshan, Ma Dongli, et al. Development of foreign trans-media aircraft and its enlightenment to China. Ship Science and Technology, 2016, 38(9): 152-157 (in Chinese) doi: 10.3404/j.issn.1672-7619.2016.05.032
    [2]
    杨兴帮, 梁建宏, 文力等. 水空两栖跨介质无人飞行器研究现状. 机器人, 2018, 40(1): 102-114 (Yang Xingbang, Liang Jianhong, Wen Li, et al. Research status of water-air amphibious trans-media unmanned vehicle. Robot, 2018, 40(1): 102-114 (in Chinese)
    [3]
    冯金富, 胡俊华, 齐铎. 水空跨介质航行器发展需求及其关键技术. 空军工程大学学报(自然科学版), 2019, 20(3): 8-13 (Feng Jinfu, Hu Junhua, Qi Duo. Study on development needs and key technologies of air-water trans-media vehicle. Journal of Air Force Engineering University (Natural Science Edition), 2019, 20(3): 8-13 (in Chinese)
    [4]
    唐胜景, 张宝超, 岳彩红等. 跨介质飞行器关键技术及飞行动力学研究趋势分析. 飞航导弹, 2021, 6: 7-13 (Tang Shengjing, Zhang Baochao, Yue Caihong, et al. Analysis of key technologies and flight dynamics of trans-media aircraft. Aerodynamic Missile Journal, 2021, 6: 7-13 (in Chinese)
    [5]
    王浩宇, 李木易, 程少化等. 航行体高速入水问题研究综述. 宇航总体技术, 2021, 5(3): 65-70 (Wang Haoyu, Li Muyi, Cheng Shaohua, et al. Review of vehicle’s high-speed water entry. Astronautical Systems Engineering Technology, 2021, 5(3): 65-70 (in Chinese)
    [6]
    张衡. 尾型对超空化航行器水动力特性的影响研究. [硕士论文]. 西安: 西北工业大学, 2015

    Zhang Heng. Stern hydrodynamic characteristics of supercavitation vehicle research. [Master Thesis]. Xi’an: Northwestern Polytechnology University, 2015 (in Chinese))
    [7]
    王科燕, 邓飞, 张衡等. 超空泡航行器扩张尾裙流体动力特性试验研究. 西安交通大学学报, 2016, 50(1): 53-58 (Wang Keyan, Deng Fei, Zhang Heng, et al. Experimental research on hydrodynamic characteristics of supercavitating vehicle expansion sterns. Journal of Xian Jiaotong University, 2016, 50(1): 53-58 (in Chinese) doi: 10.7652/xjtuxb201601009
    [8]
    栗夫园, 党建军, 张宇文. 带锥形空化器超空泡航行体的空泡与力学特性. 江苏大学学报(自然科学版), 2017, 38(2): 161-167

    Li Fuyuan, Dang Jianjun, Zhang Yuwen. Cavity and hydrodynamic features of supercavitating vehicle with conical cavitator. Journal of Jiangsu University (Natural Science Edition), 2017, 38(2): 161-167 (in Chinese)
    [9]
    Lee MY. Generation of shock waves by a body during high-speed water entry. [PhD Thesis]. The University of Texas at Austin, 1995
    [10]
    Truscott T. Cavity Dynamics of Water Entry for Spheres and Ballistic Projectile. Cambridge, Mass, US: MIT, 2009
    [11]
    张伟, 郭子涛, 肖新科等. 弹体高速入水特性实验研究. 爆炸与冲击, 2011, 31(6): 579-584 (Zhang Wei, Guo Zitao, Xiao Xinke, et al. Experimental investigations on behaviors of projectile high-speed water entry. Explosion and Shock Waves, 2011, 31(6): 579-584 (in Chinese)
    [12]
    王云, 袁绪龙, 吕策. 弹体高速入水弯曲弹道实验研究. 兵工学报, 2014, 35(12): 1998-2002 (Wang Yun, Yuan Xulong, Lü Ce. Experimental research on curved trajectory of high-speed water-entry missile. Acta Atmamentarii, 2014, 35(12): 1998-2002 (in Chinese) doi: 10.3969/j.issn.1000-1093.2014.12.010
    [13]
    袁绪龙, 朱珠. 预置舵角对高速入水弹道和流体动力的影响. 应用力学学报, 2015, 32(1): 11-16 (Yuan Xulong, Zhu Zhu. Influence of preset rudder angle on trajectory and hydro-dynamic at high-speed water-entry. Chinese Journal of Applied Mechanics, 2015, 32(1): 11-16 (in Chinese) doi: 10.11776/cjam.32.01.A001
    [14]
    陈诚, 袁绪龙, 邢晓琳等. 预置舵角下超空泡航行体倾斜入水弹道特性研究. 兵工学报, 2018, 39(9): 1780-1785 (Chen Cheng, Yuan Xulong, Xing Xiaolin, et al. Research on the trajectory characteristics of supercavitating vehicle obliquely entering into water at preset rudder angle. Acta Atmamentarii, 2018, 39(9): 1780-1785 (in Chinese) doi: 10.3969/j.issn.1000-1093.2018.09.015
    [15]
    Chen C, Yuan XL, Liu XY, et al. Experimental and numerical study on the oblique water-entry impact of a cavitating vehicle with a disk cavitator. International Journal of Naval Architecture and Ocean Engineering, 2019, 11(1): 482-494 doi: 10.1016/j.ijnaoe.2018.09.002
    [16]
    时素果, 王亚东, 刘乐华等. 预置舵角下超控泡航行体运动过程弹道特性研究. 兵工学报, 2017, 38(10): 1974-1979 (Shi Suguo, Wang Yadong, Liu Lehua, et al. Research on the trajectory characteristics of supercavitating vehicle at preset rudder angle. Acta Atmamentarii, 2017, 38(10): 1974-1979 (in Chinese) doi: 10.3969/j.issn.1000-1093.2017.10.013
    [17]
    华扬, 施瑶, 潘光等. 非对称头型对航行器入水空泡及弹道特性影响的实验研究. 水动力学研究与进展(A辑). 2020, 1: 61- 67

    Hua Yang, Shi Yao, Pan Guang, et al. Experimental study on the cavity and trajectory of projectile water entry with asymmetric nose shape. Chinese Journal of Hydrodynamics, 2020, 1: 61-67 (in Chinese)
    [18]
    王晓辉, 李鹏, 孙士明等. 射弹高速入水尾拍载荷和弹道特性的数值研究. 船舶力学, 2022, 26(8): 1111-1119 (Wang Xiaohui, Li Peng, Sun Shiming, et al. Numerical study on hydrodynamic and ballistic characteristics of projectile’s high-speed water-entry process. Journal of Ship Mechanics, 2022, 26(8): 1111-1119 (in Chinese) doi: 10.3969/j.issn.1007-7294.2022.08.001
    [19]
    鱼怡澜, 施瑶, 潘光等. 超空泡航行体高速入水空泡与载荷特性数值分析. 西北工业大学学报, 2022, 40(3): 584-591 (Yu Yilan, Shi Yao, Pan Guang, et al. Numerical analysis of cavitation and impact load characteristics of supercavitating vehicle entering water at high speed. Journal of Northwestern Polytechnical University, 2022, 40(3): 584-591 (in Chinese) doi: 10.3969/j.issn.1000-2758.2022.03.014
    [20]
    Yao Shi, Guang Pan, Guoxin Yan, et al. Numerical study on the cavity characteristics and impact loads of AUV water entry. Applied Ocean Research, 2019, 89: 44-58 doi: 10.1016/j.apor.2019.05.012
    [21]
    Wang XH, Shi Y, Pan G, et al. Numerical research on the high-speed water entry trajectories of AUVs with asymmetric nose shapes. Ocean Engineering, 2021, 234(37): 109274
    [22]
    梁景奇, 王瑞, 徐保成等. 攻角对高速射弹入水过程影响研究. 兵器装备工程学报, 2020, 41(7): 23-28 (Liang Jingqi, Wang Rui, Xu Baocheng, et al. Research on influence of angle of attack on process of high-speed water-entry projectile. Journal of Ordnance Equipment Engineering, 2020, 41(7): 23-28 (in Chinese) doi: 10.11809/bqzbgcxb2020.07.006
    [23]
    秦杨, 易文俊, 管军. 超空泡射弹高速倾斜入水的空化流动数值模拟. 兵器装备工程学报, 2019, 40(7): 99-104 (Qin Yang, Yi Wenjun, Guan Jun. Numerical simulation for cavitation flow of high-speed rotating body oblique entrying into water. Journal of Ordnance Equipment Engineering, 2019, 40(7): 99-104 (in Chinese) doi: 10.11809/bqzbgcxb2019.07.020
    [24]
    郝常乐, 党建军, 陈长盛等. 基于双向流固耦合的超空泡射弹入水研究. 力学学报, 2022, 54(3): 678-687 (Hao Changle, Dang Jianjun, Chen Changsheng, et al. Numerical study on water entry process of supercavitating projectile by considering bidirectional fluid structure interaction effect. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(3): 678-687 (in Chinese) doi: 10.6052/0459-1879-21-510
    [25]
    杨晓光, 党建军, 王鹏等. 波浪对航行体高速入水载荷特性影响. 兵工学报, 2022, 45(2): 355-362 (Yang Xiaoguang, Dang Jianjun, Wang Peng, et al. The influence of waves on the impact load during high-speed water-entry of a vehicle. Acta Atmamentarii, 2022, 45(2): 355-362 (in Chinese) doi: 10.3969/j.issn.1000-1093.2022.02.013
    [26]
    Sauer J, Winkler G, Schnerr G. Cavitation and condensation-common aspects of physical modeling and numerical approach. Chemical Engineering & Technology, 2000, 23(8): 663-666
    [27]
    王辰, 鹿麟, 祁晓斌等. 超空泡射弹并联入水多相流场与弹道特性研究. 振动与冲击, 2022, 41(10): 292-300 (Wang Chen, Lu Lin, Qi Xiaobin, et al. Multiphase flow field and trajectory characteristics of two supercavitating projectiles in parallel water-entry. Journal of Vibration and Shock, 2022, 41(10): 292-300 (in Chinese) doi: 10.13465/j.cnki.jvs.2022.10.037
    [28]
    刘富强, 罗凯, 梁鸿阁等. 回转体滑水航行体流体动力特性研究. 西北工业大学学报, 2021, 39(1): 101-110 (Liu Fuqiang, Luo Kai, Liang Hongge, et al. Research on hydrodynamic characteristics of cylinder planning. Journal of Northwestern Polytechnical University, 2021, 39(1): 101-110 (in Chinese) doi: 10.3969/j.issn.1000-2758.2021.01.013
    [29]
    张宇文, 袁绪龙, 邓飞. 超空泡航行体流体动力学. 北京: 国防工业出版社, 2014

    Zhang Yuwen, Yuan Xulong, Deng Fei. Fluid Dynamics of Supercavitating Underwater Vehicles. Beijing: National Defense Industry Press, 2014 (in Chinese)
    [30]
    袁绪龙, 栗敏, 丁旭拓等. 跨介质航行器高速入水冲击载荷特性. 兵工学报, 2021, 42(7): 1440-1449 (Yuan Xulong, Li Min, Ding Xutuo, et al. Impact load characteristics of a trans-media vehicle during high-speed water-entry. Acta Atmamentarii, 2021, 42(7): 1440-1449 (in Chinese) doi: 10.3969/j.issn.1000-1093.2021.07.011
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(7)

    Article Metrics

    Article views (157) PDF downloads(17) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return