EI、Scopus 收录
Volume 55 Issue 2
Feb.  2023
Turn off MathJax
Article Contents
Zhang Shengting, Li Jing, Chen Zhangxing, Zhang Tao, Wu Keliu, Feng Dong, Bi Jianfei, Zhu Shang. Simulation of dynamic wetting effect during gas-liquid spontaneous imbibition based on modified LBM. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(2): 355-368 doi: 10.6052/0459-1879-22-409
Citation: Zhang Shengting, Li Jing, Chen Zhangxing, Zhang Tao, Wu Keliu, Feng Dong, Bi Jianfei, Zhu Shang. Simulation of dynamic wetting effect during gas-liquid spontaneous imbibition based on modified LBM. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(2): 355-368 doi: 10.6052/0459-1879-22-409


doi: 10.6052/0459-1879-22-409
  • Received Date: 2022-09-05
  • Accepted Date: 2022-11-04
  • Available Online: 2022-11-05
  • Publish Date: 2023-02-18
  • Gas-liquid spontaneous imbibition in microchannels is a widely occurring physical phenomenon in nature and many industrial fields. The dynamic contact angle is the key factor affecting the whole gas-liquid imbibition process. In this work, we use a modified pseudopotential multiphase flow lattice Boltzmann method (LBM) to capture the real-time contact angle during gas-liquid spontaneous imbibition in microchannels and analyze the dynamic characteristics of the contact angle and its effects on the imbibition length. Firstly, we coupled the Peng-Robinson (PR) equation of state to the original pseudopotential multiphase flow LBM, improved the fluid-fluid interaction force and fluid-solid interaction force formats, and added the external forces to the LBM framework by using the exact difference method. Then, the accuracy of the model was verified by calibrating the thermodynamic consistency of the model and simulating interfacial phenomena such as interfacial tension and static equilibrium contact angles. Finally, based on the established simulation method, the spontaneous gas-liquid percolation process in the microchannel is simulated in the horizontal direction. The results show that the contact angle in the imbibition process is dynamic and varies greatly in the early stage of imbibition due to the inertia force. With the further increase of the imbibition distance, it gradually decreases and tends to the static equilibrium contact angle. The contact angle in the imbibition process is related to the microchannel size and the static contact angle. As the width of the microchannel increases, the difference between the dynamic contact angle and the static contact angle in real-time increases; as the static contact angle increases, the difference between the dynamic contact angle and the static contact angle in real-time increases. In addition, the Lucas-Washburn (LW) equation, which ignores the dynamic contact angle, predicts the position of the meniscus is different from the simulated results. The real-time dynamic contact angle data obtained from the simulations can be directly applied to correct the LW equation, and the corrected LW equation predicts the position of the meniscus in general agreement with the simulated results.


  • loading
  • [1]
    蔡建超, 郁伯铭. 多孔介质自发渗吸研究进展. 力学进展, 2012, 42(6): 735-754 (Cai Jianchao, Yu Boming. Advances in studies of spontaneous imbibition in porous media. Advances in Mechanics, 2012, 42(6): 735-754 (in Chinese) doi: 10.6052/1000-0992-11-096
    Cai JC, Jin TX, Kou JS, et al. Lucas-Washburn equation-based modeling of capillary-driven flow in porous systems. Langmuir, 2021, 37(5): 1623-1636 doi: 10.1021/acs.langmuir.0c03134
    唐洪明, 朱柏宇, 王茜等. 致密砂岩气层水锁机理及控制因素研究. 中国科学:技术科学, 2018, 4848(5): 537-547 (Tang Hongming, Zhu Baiyu, Wang Xi, et al. Mechanism and control factors of water blocking in tight sandstone gas reservoir. Scientia Sinica:Technologica, 2018, 4848(5): 537-547 (in Chinese)
    申颍浩, 葛洪魁, 宿帅等. 页岩气储层的渗吸动力学特性与水锁解除潜力. 中国科学: 物理学, 力学, 天文学, 2017, 47(11): 84-94 (Shen Yinghao, Ge Hongkui, Su Shuai, et al. Imbibition characteristic of shale gas formation and water-block removal capability. Scientia Sinica:Physica,Mechanica &Astronomica, 2017, 47(11): 84-94 (in Chinese)
    宋付权, 张翔, 黄小荷等. 纳米尺度下页岩基质中的页岩气渗流及渗吸特征. 中国科学: 技术科学, 2016, 46(2): 120-126 (Song Fuquan, Zhang Xiang, Huang Xiaohe, et al. The flow characteristics of shale gas through shale rock matrix in nano-scale and water imbibition on shale sheets. Scientia Sinica: Technologica, 2016, 46(2): 120-126 (in Chinese) doi: 10.1360/N092016-00011
    Zhang ZE, Cai JC, Chen F, et al. Progress in enhancement of CO2 absorption by nanofluids: A mini review of mechanisms and current status. Renewable Energy, 2018, 118: 527-535 doi: 10.1016/j.renene.2017.11.031
    袁士义, 马德胜, 李军诗等. 二氧化碳捕集、驱油与埋存产业化进展及前景展望. 石油勘探与开发, 2022, 49(4): 1-7 (Yuan Shiyi, Ma Desheng, Li Junshi, et al. Progress and prospects of carbon dioxide capture, EOR-utilization and storage industrialization. Petroleum Exploration and Development, 2022, 49(4): 1-7 (in Chinese) doi: 10.11698/PED.20220212
    朱思南, 孙军昌, 魏国齐等. 水侵气藏型储气库注采相渗滞后数值模拟修正方法. 石油勘探与开发, 2021, 48(1): 166-174 (Zhu Sinan, Sun Junchang, Wei Guoqi, et al. Numerical simulation-based correction of relative permeability hysteresis in water-invaded underground gas storage during multi-cycle injection and production. Petroleum Exploration and Development, 2021, 48(1): 166-174 (in Chinese) doi: 10.11698/PED.2021.01.15
    Lucas R. Ueber das Zeitgesetz des kapillaren Aufstiegs von Flüssigkeiten. Kolloid-Zeitschrift, 1918, 23(1): 15-22 doi: 10.1007/BF01461107
    Washburn EW. The dynamics of capillary flow. Physical Review, 1921, 17(3): 273-283 doi: 10.1103/PhysRev.17.273
    杨敏, 曹炳阳. 微纳通道中牛顿流体毛细流动的研究进展. 科学通报, 2016, 61(14): 1574-1584 (Yang Min, Cao Bingyang. Advances of capillary filling of Newtonian fluids in micro- and nanochannels. Chinese Science Bulletin, 2016, 61(14): 1574-1584 (in Chinese) doi: 10.1360/N972015-00783
    杨敏, 曹炳阳, 杨纯等. 纳米通道中毛细流动的实验研究. 工程热物理学报, 2019, 40(9): 2151-2155 (Yang Min, Cao Bingyang, Yang Chun, et al. Experimental study on the capillary filling in nanochannels. Journal of Engineering Thermophysics, 2019, 40(9): 2151-2155 (in Chinese)
    Ding HY, Song FQ, Hu X, et al. Investigation of non-Newtonian characteristics of water flow in micro-/nanochannels and tight reservoirs. Geofluids, 2022, 2022: 1523287
    Wang Y, Song FQ, Zhu WY, et al. Flow characteristics of silicon oil in nanochannels. Journal of Hydrodynamics, 2021, 33(6): 1282-1290 doi: 10.1007/s42241-021-0102-0
    Hamraoui A, Thuresson K, Nylander T, et al. Can a dynamic contact angle be understood in terms of a friction coefficient? Journal of Colloid and Interface Science, 2000, 226(2): 199-204 doi: 10.1006/jcis.2000.6830
    Heshmati M, Piri M. Experimental investigation of dynamic contact angle and capillary rise in tubes with circular and noncircular cross sections. Langmuir, 2014, 30(47): 14151-14162 doi: 10.1021/la501724y
    Tian WB, Wu KL, Chen ZX, et al. Mathematical model of dynamic imbibition in nanoporous reservoirs. Petroleum Exploration and Development, 2022, 49(1): 170-178 doi: 10.1016/S1876-3804(22)60013-2
    Siebold A, Nardin M, Schultz J, et al. Effect of dynamic contact angle on capillary rise phenomena. Colloids and Surfaces A: PhysicoChemical and Engineering Aspects, 2000, 161(1): 81-87
    Kim H, Lim JH, Lee K, et al. Direct measurement of contact angle change in capillary rise. Langmuir, 2020, 36(48): 14597-14606 doi: 10.1021/acs.langmuir.0c02372
    Blake TD, Haynes JM. Kinetics of liquid-liquid displacement. Journal of Colloid and Interface Science, 1969, 30(3): 421-423 doi: 10.1016/0021-9797(69)90411-1
    Tian WB, Wu KL, Chen ZX, et al. Dynamic wetting of solid-liquid-liquid system by molecular kinetic theory. Journal of Colloid and Interface Science, 2020, 579: 470-478 doi: 10.1016/j.jcis.2020.06.101
    Tian WB, Wu KL, Chen ZX, et al. Effect of dynamic contact angle on spontaneous capillary-liquid-liquid imbibition by molecular kinetic theory. SPE Journal, 2021, 26(04): 2324-2339 doi: 10.2118/205490-PA
    李庆, 余悦, 唐诗. 多相格子Boltzmann方法及其在相变传热中的应用. 科学通报, 2020, 65(17): 1677-1693 (Li Qing, Yu Yue, Tang Shi. Multiphase lattice Boltzmann method and its applications in phase-change heat transfer. Chinese Science Bulletin, 2020, 65(17): 1677-1693 (in Chinese) doi: 10.1360/TB-2019-0769
    白冰, 张涛, 李汉卿等. 基于不可压LBM的汽液两相流数值研究. 工程热物理学报, 2020, 41(8): 1952-1959 (Bai Bing, Zhang Tao, Li Hanqing, et al. A Simulated Study on Liquid-gas Flow Based on Incompressible LBM Model. Journal of Engineering Thermophysics, 2020, 41(8): 1952-1959 (in Chinese)
    Moradi B, Ghasemi S, Hosseini Moghadam A, et al. Dynamic behavior investigation of capillary rising at various dominant forces using free energy lattice Boltzmann method. Meccanica, 2021, 56(12): 2961-2977 doi: 10.1007/s11012-021-01426-z
    Raiskinmäki P, Shakib-Manesh A, Jäsberg A, et al. Lattice-Boltzmann simulation of capillary rise dynamics. Journal of Statistical Physics, 2002, 107(1): 143-158
    Wolf FG, Dos Santos LOE, Philippi PC. Capillary rise between parallel plates under dynamic conditions. Journal of Colloid and Interface Science, 2010, 344(1): 171-179 doi: 10.1016/j.jcis.2009.12.023
    Lu G, Wang XD, Duan YY. Study on initial stage of capillary rise dynamics. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 433: 95-103
    Wang DD, Liu PJ, Wang JX, et al. Direct numerical simulation of capillary rise in microtubes with different cross-sections. Acta Physica Polonica, A, 2019, 135(3): 532-538
    Chen L, Kang QJ, Mu YT, et al. A critical review of the pseudopotential multiphase lattice Boltzmann model: Methods and applications. International Journal of Heat and Mass Transfer, 2014, 76: 210-236 doi: 10.1016/j.ijheatmasstransfer.2014.04.032
    Cavaccini G, Pianese V, Jannelli A, et al. One-dimensional mathematical and numerical modeling of liquid dynamics in a horizontal capillary. Journal of Computational Methods in Sciences and Engineering, 2009, 9(1-2): 3-16 doi: 10.3233/JCM-2009-0252
    Kolliopoulos P, Jochem KS, Lade Jr RK, et al. Capillary flow with evaporation in open rectangular microchannels. Langmuir, 2019, 35(24): 8131-8143 doi: 10.1021/acs.langmuir.9b00226
    Ouali FF, McHale G, Javed H, et al. Wetting considerations in capillary rise and imbibition in closed square tubes and open rectangular cross-section channels. Microfluidics and Nanofluidics, 2013, 15(3): 309-326 doi: 10.1007/s10404-013-1145-5
    Li Q, Luo KH, Kang QJ, et al. Lattice Boltzmann methods for multiphase flow and phase-change heat transfer. Progress in Energy and Combustion Science, 2016, 52: 62-105 doi: 10.1016/j.pecs.2015.10.001
    Shan XW, Chen HD. Lattice Boltzmann model for simulating flows with multiple phases and components. Physical Review E, 1993, 47(3): 1815 doi: 10.1103/PhysRevE.47.1815
    Yuan P, Schaefer L. Equations of state in a lattice Boltzmann model. Physics of Fluids, 2006, 18(4): 042101 doi: 10.1063/1.2187070
    Gong S, Cheng P. Numerical investigation of droplet motion and coalescence by an improved lattice Boltzmann model for phase transitions and multiphase flows. Computers & Fluids, 2012, 53: 93-104
    Mukherjee A, Basu DN, Mondal PK. Algorithmic augmentation in the pseudopotential-based lattice Boltzmann method for simulating the pool boiling phenomenon with high-density ratio. Physical Review E, 2021, 103(5): 053302 doi: 10.1103/PhysRevE.103.053302
    张晟庭, 李靖, 陈掌星等. 气液非混相驱替过程中的卡断机理及模拟研究. 力学学报, 2022, 54(5): 1429-1442 (Zhang Shengting, Li Jing, Chen Zhangxing, et al. Study on snap-off mechanism and simulation during gas-liquid immiscible displacement. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(5): 1429-1442 (in Chinese)
    Li Q, Luo KH, Kang QJ, et al. Contact angles in the pseudopotential lattice Boltzmann modeling of wetting. Physical Review E, 2014, 90(5): 053301 doi: 10.1103/PhysRevE.90.053301
    Kupershtokh AL, Medvedev DA, Karpov DI. On equations of state in a lattice Boltzmann method. Computers & Mathematics with Applications, 2009, 58(5): 965-974
    Huang JW, Yin XL, Killough J. Thermodynamic consistency of a pseudopotential lattice Boltzmann fluid with interface curvature. Physical Review E, 2019, 100(5): 053304 doi: 10.1103/PhysRevE.100.053304
    Huang HB, Krafczyk M, Lu XY. Forcing term in single-phase and Shan-Chen-type multiphase lattice Boltzmann models. Physical Review E, 2011, 84(4): 046710 doi: 10.1103/PhysRevE.84.046710
    Wen BH, Huang BF, Qin ZR, et al. Contact angle measurement in lattice Boltzmann method. Computers & Mathematics with Applications, 2018, 76(7): 1686-1698
    Stroberg W, Keten S, Liu WK. Hydrodynamics of capillary imbibition under nanoconfinement. Langmuir, 2012, 28(40): 14488-14495 doi: 10.1021/la302292w
    Ruiz-Gutiérrez É, Armstrong S, Lévêque S, et al. The long cross-over dynamics of capillary imbibition. Journal of Fluid Mechanics, 2022, 939: A39
    Berthier J, Gosselin D, Delapierre G. Spontaneous capillary flow: should a dynamic contact angle be taken into account? Sensors & Transducers, 2015, 191(8): 40
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(1)

    Article Metrics

    Article views (1269) PDF downloads(157) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint