EI、Scopus 收录
Turn off MathJax
Article Contents
Shen Nao, Li Xiaochun, Wang Lei. Experimental study on frictional properties of fluid-bearing sandstone fractures at different temperatures. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(2): 496-506 doi: 10.6052/0459-1879-22-400
Citation: Shen Nao, Li Xiaochun, Wang Lei. Experimental study on frictional properties of fluid-bearing sandstone fractures at different temperatures. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(2): 496-506 doi: 10.6052/0459-1879-22-400


doi: 10.6052/0459-1879-22-400
  • Received Date: 2022-08-29
  • Accepted Date: 2022-11-21
  • Available Online: 2022-11-22
  • Seismic activity caused by fluid injection in sandstone reservoirs has been associated with the frictional properties of embedded faults or fractures. In order to study the frictional characteristics of fluid-bearing sandstone fractures under different temperature conditions, velocity stepping tests were carried out at varying temperature and pressure conditions (a temperature range of 25 °C ~ 140 °C and an effective normal stress range of 4 ~ 12 MPa) on dry, water saturated and CO2 injected sandstone fractures (obtained by saw cutting), respectively. The experimental results show that: (1) For dry sandstone fractures, increasing effective normal stress and increasing temperature can both increase the initial friction coefficient of fractures, while varying effective normal stress has no obvious effect on the frictional stability of fractures. An increase in temperature is found to enhance the frictional stability of fractures. (2) For sandstone fractures saturated by water, the initial friction coefficients of fractures also increase with the effective normal stresses, but they can be weakened by the rising temperatures, and increasing effective normal stress and temperature can both favor the frictional instability of fractures; (3) For the CO2 injected sandstone fractures, the initial friction coefficients of fractures are affected by the change in effective normal stress and temperature, which is opposite to that of water-saturated sandstone fractures. The frictional stability of fractures is affected by the ambient temperature, seemingly independent of the effective normal stress. To sum up, these experimental results suggest that the frictional characteristics of sandstone fractures are jointly controlled by the effective normal stress, temperature and the injected fluid type. These experimental results may provide a better understanding of earthquakes induced by fluid injection.


  • loading
  • [1]
    Foulger GR, Wilson MP, Gluyas JG, et al. Global review of human-induced earthquakes. Earth-Science Reviews, 2018, 178: 438-514 doi: 10.1016/j.earscirev.2017.07.008
    常廷改, 胡晓. 水库诱发地震研究进展. 水利学报, 2018, 49(9): 1109-1122 (Chang Tinggai, Hu Xiao. Research progress on reservoir induced earthquake. Journal of Hydraulic Engineering, 2018, 49(9): 1109-1122 (in Chinese) doi: 10.13243/j.cnki.slxb.20180654
    Buijze L, Van Bijsterveldt L, Cremer H, et al. Review of induced seismicity in geothermal systems worldwide and implications for geothermal systems in the Netherlands. Netherlands Journal of Geosciences, 2019, 98: e13 doi: 10.1017/njg.2019.6
    Atkinson GM, Eaton DW, Igonin N. Developments in understanding seismicity triggered by hydraulic fracturing. Nature Reviews Earth & Environment, 2020, 1(5): 264-277
    柳占立, 庄茁, 孟庆国等. 页岩气高效开采的力学问题与挑战. 力学学报, 2017, 49(3): 507-516 (Liu Zhanli, Zhuang Zuo, Meng Qingguo, et al. Problems and challenges of mechanics in shale gas effcient exploitation. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(3): 507-516 (in Chinese) doi: 10.6052/0459-1879-16-399
    魏路路, 姚宴波, 韦正达等. 微地震监测技术在气田水回注中的应用. 石油地球物理勘探, 2018, 53(S2): 168-173 (Wei Lulu, Yao Yanbo, Wei Zhengda, et al. Microseismic monitoring for water reinjection in a gas field. Oil Geophysical Prospecting, 2018, 53(S2): 168-173 (in Chinese) doi: 10.13810/j.cnki.issn.1000-7210.2018.S2.026
    Vilarrasa V, Carrera J, Olivella S, et al. Induced seismicity in geologic carbon storage. Solid Earth, 2019, 10(3): 871-892 doi: 10.5194/se-10-871-2019
    Mcgarr A, Barbour AJ. Wastewater disposal and the earthquake sequences during 2016 near fairview, pawnee, and cushing, oklahoma. Geophysical Research Letters, 2017, 44(18): 9330-9336 doi: 10.1002/2017GL075258
    Goodfellow SD, Nasseri MHB, Maxwell SC, et al. Hydraulic fracture energy budget: Insights from the laboratory. Geophysical Research Letters, 2015, 42(9): 3179-3187 doi: 10.1002/2015GL063093
    Passarelli L, Selvadurai PA, Rivalta E, et al. The source scaling and seismic productivity of slow slip transients. Science Advances, 2021, 7(32): eabg9718 doi: 10.1126/sciadv.abg9718
    唐荣江, 朱守彪. 不同摩擦本构关系对断层自发破裂动力学过程的影响. 地球物理学报, 2020, 63(10): 3712-3726 (Tang Rongjiang, Zhu Shoubiao. The effect of different friction laws on dynimic simulations of spontaneous rupture propagation. Chinese Journal of Geophysics, 2020, 63(10): 3712-3726 (in Chinese) doi: 10.6038/cjg2020O0031
    Ida Y. Cohesive force across the tip of a longitudinal-shear crack and Griffith's specific surface energy. Journal of Geophysical Research (1896-1977) , 1972, 77(20): 3796-3805
    Beeler NM, Tullis TE, Goldsby DL. Constitutive relationships and physical basis of fault strength due to flash heating. Journal of Geophysical Research: Solid Earth, 2008, 113(B1): B01401
    Dieterich JH. Time-dependent friction and the mechanics of stick-slip. Pure and Applied Geophysics, 1978, 116(4): 790-806
    Ruina A. Slip instability and state variable friction laws. Journal of Geophysical Research, 1983, 88(B12): 10359-10370 doi: 10.1029/JB088iB12p10359
    Cappa F, Scuderi MM, Collettini C, et al. Stabilization of fault slip by fluid injection in the laboratory and in situ. Science Advances, 2019, 5(3): eaau4065 doi: 10.1126/sciadv.aau4065
    Den Hartog S aM, Thomas MY, Faulkner DR. How do laboratory friction parameters compare with observed fault slip and geodetically derived friction parameters? insights from the longitudinal valley fault. Journal of Geophysical Research: Solid Earth, 2021, 126(10): e2021JB022390
    Fang Y, Elsworth D, Wang C, et al. Frictional stability-permeability relationships for fractures in shales. Journal of Geophysical Research: Solid Earth, 2017, 122(3): 1760-1776 doi: 10.1002/2016JB013435
    Fang Y, Elsworth D, Ishibashi T, et al. Permeability evolution and frictional stability of fabricated fractures with specified roughness. Journal of Geophysical Research: Solid Earth, 2018, 123(11): 9355-9375 doi: 10.1029/2018JB016215
    Fang Y, Elsworth D, Wang C, et al. Mineralogical controls on frictional strength, stability, and shear permeability evolution of fractures. Journal of Geophysical Research: Solid Earth, 2018, 123(5): 3549-3563 doi: 10.1029/2017JB015338
    Harbord CWA, Nielsen SB, De Paola N, et al. Earthquake nucleation on rough faults. Geology, 2017, 45(10): 931-934 doi: 10.1130/G39181.1
    Cornelio C, Violay M. Effect of fluid viscosity on earthquake nucleation. Geophysical Research Letters, 2020, 47(12): e2020GL087854
    李小春, 刘延锋, 白冰等. 中国深部咸水含水层CO2储存优先区域选择. 岩石力学与工程学报, 2006, 5: 963-968 (Li Xiaochun, Liu Yanfeng, Bai Bing, et al. Ranking and screening of CO2 saline aquifer storage zones in China. Chinese Journal of Rock Mechanisc and Engineering, 2006, 5: 963-968 (in Chinese) doi: 10.3321/j.issn:1000-6915.2006.05.015
    Samuelson J, Spiers CJ. Fault friction and slip stability not affected by CO2 storage: Evidence from short-term laboratory experiments on North Sea reservoir sandstones and caprocks. International Journal of Greenhouse Gas Control, 2012, 11: S78-S90 doi: 10.1016/j.ijggc.2012.09.018
    Shen N, Li X, Zhang Q, et al. Comparison of shear-induced gas transmissivity of tensile fractures in sandstone and shale under varying effective normal stresses. Journal of Natural Gas Science and Engineering, 2021, 95: 104218 doi: 10.1016/j.jngse.2021.104218
    Barton N. Review of a new shear-strength criterion for rock joints. Engineering Geology, 1973, 7(4): 287-332 doi: 10.1016/0013-7952(73)90013-6
    Dieterich JH. Modeling of rock friction: 1. Experimental results and constitutive equations. Journal of Geophysical Research, 1979, 84(B5): 2161-2168 doi: 10.1029/JB084iB05p02161
    Bhattacharya P, Rubin AM, Bayart E, et al. Critical evaluation of state evolution laws in rate and state friction: Fitting large velocity steps in simulated fault gouge with time-, slip-, and stress-dependent constitutive laws. Journal of Geophysical Research:Solid Earth, 2015, 120(9): 6365-6385 doi: 10.1002/2015JB012437
    Zhang Q, Li X, Bai B, et al. Development of a direct-shear apparatus coupling with high pore pressure and elevated temperatures. Rock Mechanics and Rock Engineering, 2019, 52(9): 3475-3484 doi: 10.1007/s00603-019-1735-y
    Shen N, Wang L, Li X. Laboratory simulation of injection-induced shear slip on saw-cut sandstone fractures under different boundary conditions. Rock Mechanics and Rock Engineering, 2021, 55(2): 751-771
    Ikari MJ, Saffer DM, Marone C. Frictional and hydrologic properties of clay-rich fault gouge. Journal of Geophysical Research-Solid Earth, 2009, 114(B5): B05409
    Morad D, Sagy A, Tal Y, et al. Fault roughness controls sliding instability. Earth and Planetary Science Letters, 2022, 579: 117365 doi: 10.1016/j.jpgl.2022.117365
    刘玉春, 荆刚, 赵扬锋等. 加载速率与断层倾角对断层矿震失稳影响的试验研究. 岩土力学, 2022, 43(S1): 35-45 (Liu Yuchun, Jing Gang, Zhao Yangfeng, et al. Experimental study on fault rockbrust instability by loading rate and fault slip. Rock and Soil Mechanics, 2022, 43(S1): 35-45 (in Chinese) doi: 10.16285/j.rsm.2021.0179
    Skarbek RM, Savage HM. RSFit3000: A MATLAB GUI-based program for determining rate and state frictional parameters from experimental data. Geosphere, 2019, 15(5): 1665-1676 doi: 10.1130/GES02122.1
    Kilgore BD, Blanpied ML, Dieterich JH. Velocity dependent friction of granite over a wide range of conditions. Geophysical Research Letters, 1993, 20(10): 903-906 doi: 10.1029/93GL00368
    Shen H, Zhang Q, Li Q, et al. Experimental and numerical investigations of the dynamic permeability evolution of a fracture in granite during shearing under different normal stress conditions. Rock Mechanics and Rock Engineering, 2020, 53(10): 4429-4447 doi: 10.1007/s00603-020-02074-7
    Bedford JD, Faulkner DR. The role of grain size and effective normal stress on localization and the frictional stability of simulated quartz gouge. Geophysical Research Letters, 2021, 48(7): e2020GL092023
    Marone C, Scholz CH. The depth of seismic faulting and the upper transition from stable to unstable slip regimes. Geophysical Research Letters, 1988, 15(6): 621-624 doi: 10.1029/GL015i006p00621
    Reches ZE, Lockner DA. Fault weakening and earthquake instability by powder lubrication. Nature, 2010, 467(7314): 452-455 doi: 10.1038/nature09348
    Den Hartog S, Niemeijer AR, Spiers CJ. New constraints on megathrust slip stability under subduction zone P–T conditions. Earth and Planetary Science Letters, 2012, 353-354: 240-252 doi: 10.1016/j.jpgl.2012.08.022
    Brace WF, Byerlee JD. California earthquakes: why only shallow focus? Science, 1970, 168(3939): 1573-1575 doi: 10.1126/science.168.3939.1573
    Passelègue FX, Aubry J, Nicolas A, et al. From fault creep to slow and fast earthquakes in carbonates. Geology, 2019, 47(8): 744-748 doi: 10.1130/G45868.1
    Mitchell EK, Fialko Y, Brown KM. Frictional properties of gabbro at conditions corresponding to slow slip events in subduction zones. Geochemistry, Geophysics, Geosystems, 2015, 16(11): 4006-4020 doi: 10.1002/2015GC006093
    Blanpied ML, Lockner DA, Byerlee JD. Fault stability inferred from granite sliding experiments at hydrothermal conditions. Geophysical Research Letters, 1991, 18(4): 609-612 doi: 10.1029/91GL00469
    Verberne BA, Spiers CJ, Niemeijer AR, et al. Frictional properties and microstructure of calcite-rich fault gouges sheared at sub-seismic sliding velocities. Pure and Applied Geophysics, 2014, 171(10): 2617-2640 doi: 10.1007/s00024-013-0760-0
    Gratier JP, Dysthe DK, Renard F. The Role of Pressure Solution Creep in the Ductility of the Earth’s Upper Crust//Dmowska R, editor. Advances in Geophysics. Elsevier, 2013: 47-179
    Pluymakers AMH, Samuelson JE, Niemeijer AR, et al. Effects of temperature and CO2 on the frictional behavior of simulated anhydrite fault rock. Journal of Geophysical Research: Solid Earth, 2014, 119(12): 8728-8747 doi: 10.1002/2014JB011575
    Isaka BLA, Ranjith PG, Rathnaweera TD, et al. Testing the frackability of granite using supercritical carbon dioxide: Insights into geothermal energy systems. Journal of CO 2 Utilization, 2019, 34: 180-197 doi: 10.1016/j.jcou.2019.06.009
    徐永福. 膨胀土的水力作用机理及膨胀变形理论. 岩土工程学报, 2020, 42(11): 1979-1987 (Xu Yongfu. Hydraulic mechanism and swelling deformation theory of expansive soils. Chinese Journal of Geotechnical Engineering, 2020, 42(11): 1979-1987 (in Chinese)
    Scuderi MM, Collettini C. Fluid injection and the mechanics of frictional stability of shale-bearing faults. Journal of Geophysical Research:Solid Earth, 2018, 123(10): 8364-8384 doi: 10.1029/2018JB016084
    宋朝阳, 纪洪广, 刘志强等. 饱和水弱胶结砂岩剪切断裂面形貌特征及破坏机理. 煤炭学报, 2018, 43(9): 2444-2451 (Song Zhaoyang, Ji Hongguang, Liu Zhiqiang, et al. Morphology and failure mechanism of the shear fracture surface of weakly cemented sandstone with water saturation. Journal of China Coal Society, 2018, 43(9): 2444-2451 (in Chinese) doi: 10.13225/j.cnki.jccs.2017.1767
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article Metrics

    Article views (158) PDF downloads(35) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint