EI、Scopus 收录
中文核心期刊
Volume 55 Issue 1
Jan.  2023
Turn off MathJax
Article Contents
Zhang Zixuan, Dong Yidao, Huang Ziquan, Kong Lingfa, Liu Wei. A scale-invariant high-order WCNS scheme. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(1): 254-271 doi: 10.6052/0459-1879-22-399
Citation: Zhang Zixuan, Dong Yidao, Huang Ziquan, Kong Lingfa, Liu Wei. A scale-invariant high-order WCNS scheme. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(1): 254-271 doi: 10.6052/0459-1879-22-399

A SCALE-INVARIANT HIGH-ORDER WCNS SCHEME

doi: 10.6052/0459-1879-22-399
  • Received Date: 2022-08-29
  • Accepted Date: 2022-10-20
  • Available Online: 2022-10-21
  • Publish Date: 2023-01-18
  • For numerical simulation of high-speed flows, it requires that small-scale structures are resolved with high-fidelity, and discontinuities are stably captured without spurious oscillation. These two aspects put forward almost contradictory requirements for numerical schemes. The widely used high-order schemes can satisfy the two demands required above to some extent. However, they all have advantages and disadvantages compared to each other and no one can be considered perfect. For example, high-order schemes are prone to generating numerical oscillations near discontinuities when a small-scale problem is discretized, such as the Reynolds-stress model. To solve this deficiency, a simple, effective and robust modification is introduced to the seventh-order weight compact nonlinear scheme (WCNS) by making use of the descaling function to formulate a scale-invariant WCNS scheme. The descaling function is devised using an average of the function values and introduced into the nonlinear weights of the WCNS7-JS/Z/D schemes to eliminate the scale dependency. The design idea of the scale-invariant WCNS scheme is to make weights independent of the scale factor and the sensitivity parameter. In addition, the shock-capturing ability of the new scheme performs well even for small-scale problems. The new schemes can achieve an essentially non-oscillatory approximation of a discontinuous function (ENO-property), a scale-invariant property with an arbitrary scale of a function (Si-property), and an optimal order of accuracy with smooth function regardless of the critical point (Cp-property). We derive the seventh-order D-type weights. The one-dimensional linear advection equation is solved to verify that WCNS schemes can achieve the optimal (seventh) order of accuracy. We test a series of one- and two-dimensional numerical experiments governed by Euler equations to demonstrate that the scale-invariant WCNS schemes perform well in the shock-capturing ability. Overall, the scale-invariant WCNS schemes provide a new method for improving WCNS schemes and solving nonlinear problems.

     

  • loading
  • [1]
    王年华, 常兴华, 马戎等. HyperFLOW软件非结构网格亚跨声速湍流模拟的验证与确认. 力学学报, 2019, 51(3): 813-825 (Wang Nianhua, Chang Xinghua, Ma Rong, et al. Verification and validation of hyperflow solver for subsonic and transonic turbulent flow simulations on unstructured/hybrid grids. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(3): 813-825 (in Chinese) doi: 10.6052/0459-1879-18-331
    [2]
    Zhang HB, Xu CG, Dong HB. An extended seventh-order compact nonlinear scheme with positivity-preserving property. Computers and Fluids, 2021, 229: 105085
    [3]
    Dong YD, Deng XG, Dan X, et al. Reevaluation of High-order Finite Difference and Finite Volume Algorithms with Freestream Preservation Satisfied. Computers and Fluids, 2017, 156: 343-352
    [4]
    Lele SK. Compact finite difference schemes with spectral-like resolution. Journal of Computational Physics, 1992, 103(1): 16-42 doi: 10.1016/0021-9991(92)90324-R
    [5]
    Johnsen E, Larsson J, Bhagatwala AV, et al. Assessment of high-resolution methods for numerical simulations of compressible turbulence with shock waves. Journal of Computational Physics, 2010, 229(4): 1213-1237 doi: 10.1016/j.jcp.2009.10.028
    [6]
    Harten A. High resolution schemes for hyperbolic conservation laws. Journal of Computational Physics, 1983, 49(3): 357-393 doi: 10.1016/0021-9991(83)90136-5
    [7]
    Billet G, Louedin O. Adaptive limiters for improving the accuracy of the MUSCL approach for unsteady flows. Journal of Computational Physics, 2001, 170(1): 161-183 doi: 10.1006/jcph.2001.6731
    [8]
    Yee HC, Klopfer GH, Montagné JL. High-resolution shock-capturing schemes for inviscid and viscous hypersonic flows. Journal of Computational Physics, 1990, 88(1): 31-61 doi: 10.1016/0021-9991(90)90241-R
    [9]
    Wang ZJ, Fidkowski K, Abgrall R, et al. High-order CFD methods: current status and perspective. International Journal for Numerical Methods in Fluids, 2013, 72(8): 811-845 doi: 10.1002/fld.3767
    [10]
    Tian ZZ, Wang GX, Zhang F, et al. A third-order compact nonlinear scheme for compressible flow simulations. International Journal for Numerical Methods in Fluids, 2020, 92(10): 1352-1367 doi: 10.1002/fld.4831
    [11]
    Harten A, Osher S. Uniformly high-order accurate nonoscillatory schemes. I. Siam Journal on Numerical Analysis, 1987, 24(2): 279-309 doi: 10.1137/0724022
    [12]
    Harten A, Engquist B, Osher S, et al. Uniformly high order accurate essentially non-oscillatory schemes, III. Journal of Computational Physics, 1987, 71(1): 231-303
    [13]
    Liu X, Osher S, Chan T. Weighted essentially non-oscillatory schemes. Journal of Computational Physics, 1994, 115(1): 200-212 doi: 10.1006/jcph.1994.1187
    [14]
    李虎, 张树海. 可压缩各向同性衰减湍流直接数值模拟研究. 力学学报, 2012, (4): 673-686 (Li Hu, Zhang Shuhai. Direct numerical simulation of decaying compressible isotropic turbulence. Chinese Journal of Theoretical and Applied Mechanics, 1994, 115(1): 200-212 (in Chinese))
    [15]
    童福林, 李新亮, 唐志共. 激波与转捩边界层干扰非定常特性数值分析. 力学学报, 2017, 49(1): 93-104 (Tong Fulin, Li Xinliangy, Tang Zhigong. Numerical analysis of unsteady motion in shock wave/transitional boundary layer interaction. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(1): 93-104 (in Chinese) doi: 10.6052/0459-1879-16-224
    [16]
    韦志龙, 蒋勤. 基于WENO-THINC/WLIC模型的水气二相流数值模拟. 力学学报, 2021, 53(4): 973-985 (Wei Zhilong, Jiang Qin. Numerical study on water-air two-phase flow based on WENO-THINC/WLIC model. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(4): 973-985 (in Chinese)
    [17]
    Jiang GS, Shu CW. Efficient implementation of weighted ENO schemes. Journal of Computational Physics, 1996, 126(1): 202-228 doi: 10.1006/jcph.1996.0130
    [18]
    Henrick AK, Aslam TD, Powers JM. Mapped weighted essentially non-oscillatory schemes: Achieving optimal order near critical points. Journal of Computational Physics, 2005, 207(2): 542-567 doi: 10.1016/j.jcp.2005.01.023
    [19]
    Borges R, Carmona M, Costa B, et al. An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws. Journal of Computational Physics, 2008, 227(6): 3191-3211 doi: 10.1016/j.jcp.2007.11.038
    [20]
    Qiu JX, Shu CW. On the construction, comparison, and local characteristic decomposition for high-order central WENO schemes. Journal of Computational Physics, 2002, 183(1): 187-209 doi: 10.1006/jcph.2002.7191
    [21]
    骆信, 吴颂平. 改进的五阶WENO-Z+ 格式. 力学学报, 2019, 51(6): 1927-1939 (Luo Xin, Wu Songping. An improved fifth-order WENO-Z + scheme. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6): 1927-1939 (in Chinese)
    [22]
    Li JY, Shu CW, Qiu JX. Multi-resolution HWENO schemes for hyperbolic conservation laws. Journal of Computational Physics, 2021, 446: 110653
    [23]
    Deng XG, Mao ML. Weighted compact high-order nonlinear schemes for the Euler equations//13th Computational Fluid Dynamics Conference, 1997
    [24]
    Deng XG, Zhang HX. Developing high-order weighted compact nonlinear schemes. Journal of Computational Physics, 2000, 165(1): 22-44 doi: 10.1006/jcph.2000.6594
    [25]
    Deng XG, Maekawa H. Compact high-order accurate nonlinear schemes. Journal of Computational Physics, 1997, 130(1): 77-91 doi: 10.1006/jcph.1996.5553
    [26]
    赵云飞, 刘伟, 冈敦殿等. 粗糙物面引起的超声速边界层转捩现象研究. 宇航学报, 2015, 36(6): 739-746 (Zhao Yunfei, Liu Wei, Gang Dundian, et al. Study of surface roughness induced supersonic boundary layer transition. Journal of Astronautics, 2015, 36(6): 739-746 (in Chinese)
    [27]
    王光学, 王圣业, 葛明明等. 基于转捩模型及声比拟方法的高精度圆柱分离涡/涡致噪声模拟. 物理学报, 2018, 67(19): 11 (Wang Guangxue, Wang Shengye, Ge Mingming, et al. High-order delay detached-eddy simulations of cylindrical separated vortex/vortex induced noise based on transition model and acoustic analogy. Chinese Journal of Physics, 2018, 67(19): 11 (in Chinese) doi: 10.7498/aps.67.20172677
    [28]
    Man LW, Angel JB, Barad MF, et al. A positivity-preserving high-order weighted compact nonlinear scheme for compressible gas-liquid flows. Journal of Computational Physics, 2021, 444: 110569
    [29]
    赵云飞, 刘伟, 刘绪等. 非定常运动下的激波/边界层干扰分离特性研究. 空气动力学学报, 2014, 32(5): 610-617 (Zhao Yunfei, Liu Wei, Liu Xu, et al. Unsteady shock/boundary layer interaction of compression corner at movement conditions. Acta Aerodynamica Sinica, 2014, 32(5): 610-617 (in Chinese) doi: 10.7638/kqdlxxb-2014.0089
    [30]
    Deng XG. New High-order hybrid cell-edge and cell-node weighted compact nonlinear schemes//20th AIAA Computational Fluid Dynamics Conference, 2011
    [31]
    Nonomura T, Iizuka N, Fujii K. Freestream and vortex preservation properties of high-order WENO and WCNS on curvilinear grids. Computers and Fluids, 2010, 39(2): 197-214 doi: 10.1016/j.compfluid.2009.08.005
    [32]
    Nonomura T, Fujii K. Robust explicit formulation of weighted compact nonlinear scheme. Computers and Fluids, 2013, 85: 8-18 doi: 10.1016/j.compfluid.2012.09.001
    [33]
    Wonga ML, Lelea SK. High-order localized dissipation weighted compact nonlinear scheme for shock- and interface-capturing in compressible flows. Journal of Computational Physics, 2017, 339: 179-209 doi: 10.1016/j.jcp.2017.03.008
    [34]
    Wang DF, Deng XG, Wang GX, et al. Developing a hybrid flux function suitable for hypersonic flow simulation with high-order methods. International Journal for Numerical Methods in Fluids, 2016, 81(5): 309-327 doi: 10.1002/fld.4186
    [35]
    Zhang HB, Zhang F, Liu J, et al. A simple extended compact nonlinear scheme with adaptive dissipation control. Communications in Nonlinear Science and Numerical Simulation, 2020, 84: 1007-5704
    [36]
    Deng XG, Xin L, Mao ML, et al. Investigation on weighted compact fifth-order nonlinear scheme and applications to complex flow//17th AIAA Computational Fluid Dynamics Conference, 2005
    [37]
    Wang SY, Dong YD, Deng XG, et al. High-order simulation of aeronautical separated flows with a Reynold stress model. Journal of Aircraft, 2018, 55(3): 1177-1190 doi: 10.2514/1.C034628
    [38]
    Don WS, Li R, Wang BS, et al. A novel and robust scale-invariant WENO scheme for hyperbolic conservation laws. Journal of Computational Physics, 2022: 448
    [39]
    Deng XG. High-order accurate dissipative weighted compact nonlinear schemes. Science in China Series A-Mathematics Physics Astronomy, 2002, 45(3): 356-370
    [40]
    Nonomura T, Fujii K. Effects of difference scheme type in high-order weighted compact nonlinear schemes. Journal of Computational Physics, 2009, 228(10): 3533-3539 doi: 10.1016/j.jcp.2009.02.018
    [41]
    Steger JL, Warming RF. Flux vector splitting of the inviscid equations with application to finite difference methods. Journal of Computational Physics, 1981, 40(2): 263-293 doi: 10.1016/0021-9991(81)90210-2
    [42]
    Roe PL. Approximate Riemann solvers, parameter vectors, and difference schemes. Journal of Computational Physics, 1997, 135(2): 250-258 doi: 10.1006/jcph.1997.5705
    [43]
    Rusanov VV. The calculation of the interaction of non-stationary shock waves and obstacles. Ussr Computational Mathematics and Mathematical Physics, 1962, 1(2): 304-320 doi: 10.1016/0041-5553(62)90062-9
    [44]
    Wang YH, Wang BS, Don WS. Generalized sensitivity parameter free fifth order WENO finite difference scheme with Z-type weights. Journal of Scientific Computing, 2019, 81(3): 1329-1358 doi: 10.1007/s10915-019-00998-z
    [45]
    Castro M, Costa B, Don WS. High order weighted essentially non-oscillatory WENO-Z schemes for hyperbolic conservation laws. Journal of Computational Physics, 2011, 230(5): 1766-1792 doi: 10.1016/j.jcp.2010.11.028
    [46]
    Lax PD. Weak solutions of nonlinear hyperbolic equations and their numerical computation. Communications on Pure and Applied Mathematics, 1954, 7(1): 159-193 doi: 10.1002/cpa.3160070112
    [47]
    Sod GA. A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws. Journal of Computational Physics, 1978, 27(1): 1-31 doi: 10.1016/0021-9991(78)90023-2
    [48]
    Woodward P, Colella P. The numerical stimulation of two-dimensional fluid flow with strong shocks. Journal of Computational Physics, 1984, 54(1): 115-173 doi: 10.1016/0021-9991(84)90142-6
    [49]
    Lax P, Liu X. Solution of two-dimensional Riemann problems of gas dynamics by positive schemes. Siam Journal on Scientific Computing, 1998, 19(2): 319-40 doi: 10.1137/S1064827595291819
    [50]
    Mikaelian KO. Rayleigh–Taylor and Richtmyer–Meshkov instabilities and mixing in stratified cylindrical shells. Physics of Fluids, 2005, 17: 094105 doi: 10.1063/1.2046712
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(18)  / Tables(2)

    Article Metrics

    Article views (271) PDF downloads(79) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return