EI、Scopus 收录
中文核心期刊
Turn off MathJax
Article Contents
Li Chunfeng, Zhao Xueting, Duan Wei, Wu Tao, Yao Zewei, Chen Guoxin, Li Gang, Peng Xi. Strategic and geodynamic analyses of geo-sequestration of CO2 in China offshore sedimentary basins. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(2): 1-13 doi: 10.6052/0459-1879-22-384
Citation: Li Chunfeng, Zhao Xueting, Duan Wei, Wu Tao, Yao Zewei, Chen Guoxin, Li Gang, Peng Xi. Strategic and geodynamic analyses of geo-sequestration of CO2 in China offshore sedimentary basins. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(2): 1-13 doi: 10.6052/0459-1879-22-384

STRATEGIC AND GEODYNAMIC ANALYSES OF GEO-SEQUESTRATION OF CO2 IN CHINA OFFSHORE SEDIMENTARY BASINS

doi: 10.6052/0459-1879-22-384
  • Received Date: 2022-08-22
  • Accepted Date: 2022-10-27
  • Available Online: 2022-10-28
  • Focusing on the national strategic goal of "Carbon Peaking and Carbon Neutrality", this paper comprehensively analyzes the strategic conditions and targets suitable for large-scale CO2 geo-storage in the China offshore basins, from the perspectives of fault activity, basin pressure, tectonic subsidence, seismicity, and geothermal gradient. It is considered that the East China Sea Shelf Basin, Pearl River Mouth Basin, eastern Qiongdongnan Basin, and the central South China Sea basin are the best geological storage areas for CO2, although this does not exclude suitable targets in other unfavorable sedimentary basins since a specific geo-sequestration target is small in area. The suitable CO2 storage strata in the East China Sea Shelf, Pearl River Mouth, and Qiongdongnan Basins include the bottom salt-water layer of the late rapid subsidence sediments in the open-sea environment and the hydrocarbon-bearing units in the thermal subsidence sedimentary sequences. Between 800 and 4000 m depths beneath the seafloor, the porosity is greater than 10%, and the hydrostatic and lithostatic pressures vary from ~ 8 to ~ 40 MPa and from ~ 13 to ~ 83 MPa, respectively. In this pressure and suitable geothermal gradient ranges, CO2 exists in a supercritical state, and its density is relatively stable with temperature and pressure changes, which is beneficial to the flow and permeation of CO2. The scale and number of mafic magmatic rock formations in the basins also provide good conditions for CO2 geological sequestration and permanent mineralization. Although operationally difficult and expensive, CO2 storage in the central South China Sea basin is very safe. CO2 injected deep into the oceanic basalt can undergo basalt mineralization, but if CO2 is escaped as the mineralization process is relatively slow, escaped CO2 can be further trapped by multiple other storage processes, including pyroclastic rock mineralization, seafloor sediment sequestration, seabed sediment CO2 hydrate storage, carbonate neutralization reaction, seabed carbon lake, ocean dissolution, etc. The existing six International Oceanic Discovery Program (IODP) boreholes that have encountered basement basalt in the central basin of the South China Sea can provide a good scientific and engineering foundation for the pilot CO2 storage experiment in the South China Sea basin.

     

  • loading
  • [1]
    文冬光, 郭建强, 张森琦等. 中国二氧化碳地质储存研究进展. 中国地质, 2014, 41(5): 1716-1723 (Wen Dongguang, Guo Jianqiang, Zhang Senqi, et a1. The progress in the research on carbon dioxide geological storage in China. Geology in China, 2014, 41(5): 1716-1723 (in Chinese)
    [2]
    王江海, 孙贤贤, 徐小明等. 海洋碳封存技术: 现状、问题与未来. 地球科学进展, 2015, 30(1): 17-25 (Wang Jianghai, Sun Xianxian, Xu Xiaoming, et al. Marine carbon sequestration: current situation, problems and future. Advances in Earth Science, 2015, 30(1): 17-25 (in Chinese) doi: 10.11867/j.issn.1001-8166.2015.01.0017
    [3]
    李 琦, 魏亚妮, 刘桂臻. 中国沉积盆地深部CO2 地质封存联合咸水开采容量评估. 南水北调与水利科技, 2013, 11(4): 93-96 (Li Qi, Wei Yani, Liu Guizhen. Assessment of CO2 storage capacity and saline water development in sedimentary basins of China. South-to-North Water Transfers and Water Science &Technology, 2013, 11(4): 93-96 (in Chinese)
    [4]
    孙腾民, 刘世奇, 汪 涛. 中国二氧化碳地质封存潜力评价研究进展. 煤炭科学技术, 2021, 49(11): 10-20 (Sun Tengmin, Liu Shiqi, Wang Tao. Research advances on evaluation of CO2 geological storage potential in China. Coal Science and Technology, 2021, 49(11): 10-20 (in Chinese)
    [5]
    叶建平, 张兵, 韩学婷等. 深煤层井组CO2 注入提高采收率关键参数模拟和试验. 煤炭学报, 2016, 41(1): 149-155 (Ye Jianping, Zhang Bing, Han Xueting, et al. Well group carbon dioxide injection for enhanced coalbed methane recovery and key parameter of the numerical simulation and application in deep coalbed methane. Journal of China Coal Society, 2016, 41(1): 149-155 (in Chinese)
    [6]
    郑艳, 陈胜礼, 张炜等. 江汉盆地江陵凹陷二氧化碳地质封存数值模拟. 地质科技情报, 2009, 28(4): 75-82 (Zheng Yan, Chen Shengli, Zhang Wei, et al. Numerical simulation on geological storage of carbon dioxide in Jiangling Depression, Jianghan Basin, China. Geological Science and Technology Information, 2009, 28(4): 75-82 (in Chinese)
    [7]
    崔振东, 刘大安, 曾荣树等. 二氧化碳在砂岩透镜体中充注封存的盖层岩石抗断裂性能分析. 工程地质学报, 2009, 18(2): 204-210 (Cui Zhendong, Liu Da’an, Zeng Rongshu, et al. Fracture resistance analysis on the cap rock of the sand lens reservoir due to carbon dioxide injection and storage. Journal of Engineering Geology, 2009, 18(2): 204-210 (in Chinese)
    [8]
    Schrag DP. Storage of carbon dioxide in offshore sediments. Science, 2009, 325(5948): 1658-1659 doi: 10.1126/science.1175750
    [9]
    Haszeldine RS. Carbon capture and storage: how green can black be ? Science, 2009, 325: 1647-1652 doi: 10.1126/science.1172246
    [10]
    李文平. CO2海底地质封存技术基础理论及现状分析. 河南科技, 2021, 10: 141-143 (Li Wenping. Basic theory and present situation analysis of carbon dioxide geological. Henan Science and Technology, 2021, 10: 141-143 (in Chinese) doi: 10.3969/j.issn.1003-5168.2021.10.051
    [11]
    Oya S, Aiffaa M, Ohmura R, et al. Formation, growth and sintering of CO2 hydrate crystals in liquid water with continuous CO2 supply: implication for subsurface CO2 sequestration. International Journal of Greenhouse Gas Control, 2017, 63: 386-391 doi: 10.1016/j.ijggc.2017.06.007
    [12]
    Gauteplass J, Almenningen S, Ersland G, et al. Multiscale investigation of CO2 hydrate self-sealing potential for carbon geo-sequestration. Chemical Engineering Journal, 2020, 381: 122646
    [13]
    李洛丹, 刘妮, 刘道平. 二氧化碳海洋封存的研究进展. 能源与环境, 2008, 6: 11-12 (Li Luodan, Liu Ni, Liu Daoping. Research progress of carbon dioxide marine storage. Energy and Environment, 2008, 6: 11-12 (in Chinese)
    [14]
    Leung DYC, Caramanna G, Maroto-Valer MM. An overview of current status of carbon dioxide capture and storage technologies. Renewable and Sustainable Energy Reviews, 2014, 39: 426-443 doi: 10.1016/j.rser.2014.07.093
    [15]
    Matter JM, Stute M, Snæbjörnsdóttir SÓ, et al. Rapid carbon mineralization for permanent disposal of anthropogenic carbon dioxide emissions. Science, 2016, 352(6291): 1312-1314
    [16]
    Goldberg D, Aston L, Bonneville A, et al. Geological storage of CO2 in sub-seafloor basalt: the CarbonSAFE pre-feasibility study offshore Washington State and British Columbia. Energy Procedia, 2018, 146: 158-165 doi: 10.1016/j.egypro.2018.07.020
    [17]
    Li CF, Zhou Z, Ge H, et al. Rifting process of the Xihu Depression, East China Sea Basin. Tectonophysics, 2009, 472(1-4): 135-147 doi: 10.1016/j.tecto.2008.04.026
    [18]
    杨军, 施小斌, 王振峰等. 琼东南盆地张裂期沉降亏损与裂后期快速沉降成因. 海洋地质与第四纪地质, 2015, 35(1): 10 (Yang Jun, Shi Xiaobin, Wang Zhenfeng, et al. Origin of syn-rift subsidence deficit rapid post-rift subsidence in Qiongdongnan Basin. Marine Geology &Quaternary Geology, 2015, 35(1): 10 (in Chinese)
    [19]
    李亚敏, 施小斌, 徐辉龙等. 琼东南盆地构造沉降的时空分布及裂后期异常沉降机制. 吉林大学学报:地球科学版, 2012, 42(1): 12 (Li Yamin, Shi Xiaobin, Xu Huilong, et al. Temporal and spatial distribution of tectonic subsidence and distribution on formation mechanism of anomalous post-rift tectonic subsidence in the Qiongdongnan Basin. Journal of Jilin University:Earth Science Edition, 2012, 42(1): 12 (in Chinese)
    [20]
    Wang, P, Li, Q, Li, CF. Geology of the China Seas. Elsevier, 2014, 1-687
    [21]
    Li CF, Lin J, Kulhanek DK, et al. South China Sea Tectonics: College Station, TX (International Ocean Discovery Program)//Proceedings of the InternationalOcean Discovery Program, 2015: 349
    [22]
    Sun Z, Jian Z, Stock JM, et al. South China Sea Rifted Margin. College Station, TX (International Ocean Discovery Program)//Proceedings of the International Ocean Discovery Program, 2018: 367-368
    [23]
    Li CF, Li J, Ding W, et al. Seismic stratigraphy of the central South China Sea basin and implications for neotectonics. Journal of Geophysical Research: Solid Earth, 2015, 120(3): 1377-1399
    [24]
    Li CF, Zhou Z, Ge H, et al. Correlations between erosions and relative uplifts from the central inversion zone of the Xihu Depression, East China Sea Basin. Terrestrial, Atmospheric and Oceanic Sciences, 2007, 18(4): 757-776 doi: 10.3319/TAO.2007.18.4.757(TT)
    [25]
    赵学婷. 南海琼东南盆地构造沉降特征与CO2地质储藏潜力分析. [学士论文]. 青岛: 中国石油大学(华东), 2022

    Zhao Xueting. Analysis of tectonic subsidence characteristics and CO2 geological storage potential in Qiongdongnan Basin, South China Sea. [Bachelor Thesis]. Qingdao: China University of Petroleum (East China), 2022 (in Chinese)
    [26]
    Duan W, Li CF, Chen XG, et al. Diagenetic differences caused by gas charging with different compositions in the XF13 Block of the Yinggehai Basin, South China Sea. AAPG Bulletin, 2020, 104(4): 735-765
    [27]
    Duan W, Li CF, Luo C, et al. Effect of formation overpressure on the reservoir diagenesis and its petroleum geological significance for the DF11 block of the Yinggehai Basin, the South China Sea. Marine and Petroleum Geology, 2018, 97: 49-65
    [28]
    张启明, 董伟良. 中国含油气盆地中的超压体系. 石油学报, 2000, 21(6): 1-11 (Zhang Qiming, Dong Weiliang. Overpressure system of hydrocarbon-bearing basins in China. Acta Petrolei Sinica, 2000, 21(6): 1-11 (in Chinese)
    [29]
    霍传林. 我国近海二氧化碳海底封存潜力评估和封存区域研究. [博士论文]. 大连海事大学, 2014

    Huo Chuanlin. Study on the potential evaluation and storage areas of the carbon dioxide seabed storage in offshore China. [PhD Thesis]. Dalian Maritime University, 2014 (in Chinese))
    [30]
    Yao Z, Li CF, He G, et al. Cenozoic sill intrusion in the central and southern East China Sea Shelf Basin. Marine and Petroleum Geology, 2020, 119: 104465
    [31]
    苏程, 李春峰, 葛和平. 东海陆架盆地西湖凹陷渐-中新世异常反射体的特征与成因. 海洋学研究, 2010, 28(4): 14-21 (Su Cheng, Li Chunfeng, Ge Heping. 2010, Characteristic and formation cause of anomalous reflection on Oligocene and Miocene transition in Xihu Depression, East China Sea Basin. Oceanography Research, 2010, 28(4): 14-21 (in Chinese)
    [32]
    Matter JM, Kelemen PB. Permanent storage of carbon dioxide in geological reservoirs by mineral carbonation. Nat. Geosci., 2009, 2(12): 837-841
    [33]
    McGrail B. Wallula basalt pilot demonstration project:post-injection results and conclusions. Energy Procedia, 2017, 114: 5783-5790
    [34]
    McGrail BP, Schaef HT, Ho AM, et al. Potential for carbon dioxide sequestration in flood basalts. Journal of Geophysical Research: Solid Earth, 2006, 111(12): 1-13
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(1)

    Article Metrics

    Article views (305) PDF downloads(31) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return