EI、Scopus 收录
中文核心期刊
Volume 55 Issue 1
Jan.  2023
Turn off MathJax
Article Contents
Wu Conghai, Li Hu, Liu Xuliang, Luo Yong, Zhang Shuhai. Investigation of the time efficiency of the seventh-order WENO-S scheme. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(1): 239-253 doi: 10.6052/0459-1879-22-371
Citation: Wu Conghai, Li Hu, Liu Xuliang, Luo Yong, Zhang Shuhai. Investigation of the time efficiency of the seventh-order WENO-S scheme. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(1): 239-253 doi: 10.6052/0459-1879-22-371

INVESTIGATION OF THE TIME EFFICIENCY OF THE SEVENTH-ORDER WENO-S SCHEME

doi: 10.6052/0459-1879-22-371
  • Received Date: 2022-08-15
  • Accepted Date: 2022-11-11
  • Available Online: 2022-11-12
  • Publish Date: 2023-01-18
  • The WENO-S scheme is a class of weighted essentially non-oscillatory schemes suitable for numerical simulations of problems with discontinuities. The smoothness indicator of this kind of scheme is constant for single-frequency waves, which makes this kind of scheme have exactly the same approximate dispersion relationship with its linear base scheme, and thus has an excellent ability to simulate small-scale waves. Time efficiency is crucial for numerical methods. For a WENO-S scheme, the formula of the smoothness indicator on each sub-stencil has the same formula except for different subscripts. Then some smoothness indicators are the same when calculating adjacent numerical fluxes of linear convection equations. So, a method is proposed to remove redundant computations of smoothness indicators. The premise of this approach is that the quantity used for reconstruction or interpolation on a grid line can be represented as a sequence. According to this requirement, the feasibility and application requirements for several different physical problems are analyzed. The seventh-order WENO-S scheme is employed to illustrate the advantages of the WENO-S schemes, including good properties near extreme points, good stability near discontinuities, and outstanding spectral properties. Then the method of eliminating the computation of the redundant smoothness indicators is introduced. In numerical computation, all smoothness indicators in a grid line are calculated and stored in advance. With this approach, the count of the smoothness indicator calculation is about 1/4 of the original one for the seventh-order WENO-S scheme when there are many grid points. Numerical examples include one-dimensional advection, spherical wave propagation, two-dimensional rotation, small disturbance propagation, and one- and two- dimensional inviscid flow problems. The numerical results show that this scheme can capture a variety of flow structures well and have good time efficiency. Furthermore, the proposed method reduces the computational time by about 20%.

     

  • loading
  • [1]
    Harten A. High resolution schemes for hyperbolic conservation laws. Journal of Computational Physics, 1983, 49(3): 357-393 doi: 10.1016/0021-9991(83)90136-5
    [2]
    张涵信. 无波动、无自由参数的耗散差分格式. 空气动力学学报, 1988, 6(2): 143-165 (Zhang Hanxin. Non-oscillatory and non-free-parameter dissipation difference scheme. Acta Aerodynamica Sinica, 1988, 6(2): 143-165 (in Chinese)
    [3]
    Liu XD, Osher S, Chan T. Weighted essentially non-oscillatory shock-capturing schemes. Journal of Computational Physics, 1994, 115(1): 200-212 doi: 10.1006/jcph.1994.1187
    [4]
    Jiang GS, Shu CW. Efficient implementation of weighted ENO schemes. Journal of Computational Physics, 1996, 126(1): 202-228 doi: 10.1006/jcph.1996.0130
    [5]
    Henrick AK, Aslam TD, Powers JM. Mapped weighted essentially non-oscillatory schemes: achieving optimal order near critical points. Journal of Computational Physics, 2005, 207(2): 542-567 doi: 10.1016/j.jcp.2005.01.023
    [6]
    Borges R, Carmona M, Costa B, et al. An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws. Journal of Computational Physics, 2008, 227(6): 3192-3211
    [7]
    骆信, 吴颂平. 改进的5阶WENO-Z + 格式. 力学学报, 2019, 51(6): 1927-1939 (Luo Xin, Wu Songping. An improved fifth-order WENO-Z + scheme. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6): 1927-1939 (in Chinese) doi: 10.6052/0459-1879-19-249
    [8]
    Ha Y, Kim CH, Lee YJ, et al. An improved weighted essentially non-oscillatory scheme with a new smoothness indicator. Journal of Computational Physics, 2013, 232(1): 68-86 doi: 10.1016/j.jcp.2012.06.016
    [9]
    Hu XY, Wang Q, Adams NA. An adaptive central-upwind weighted essentially non-oscillatory scheme. Journal of Computational Physics, 2010, 229(23): 8952-8965 doi: 10.1016/j.jcp.2010.08.019
    [10]
    Zhang SH, Shu CW. A new smoothness indicator for the WENO Schemes and its effect on the convergence to steady state. Journal of Scientific Computing, 2007, 31: 273-305 doi: 10.1007/s10915-006-9111-y
    [11]
    Yamaleev NK, Carpenter MH. A systematic methodology for constructing high-order energy stable WENO schemes. Journal of Computational Physics, 2009, 228(11): 4248-4272 doi: 10.1016/j.jcp.2009.03.002
    [12]
    Deng XG, Zhang HX. Developing high-order weighted compact nonlinear schemes. Journal of Computational Physics, 2000, 165(1): 22-44 doi: 10.1006/jcph.2000.6594
    [13]
    邓小刚, 刘昕, 毛枚良等. 高精度加权紧致非线性格式的研究进展. 力学进展, 2007, 37(3): 417-427 (Deng Xiaogang, Liu Xin, Mao Meiliang, et al. Advances in high-order accurate weighted compact nonlinear schemes. Advances in Mechanics, 2007, 37(3): 417-427 (in Chinese) doi: 10.3321/j.issn:1000-0992.2007.03.009
    [14]
    张树海. 加权型紧致格式与加权本质无波动格式的比较. 力学学报, 2016, 48(2): 336-347 (Zhang Shuhai. The comparison of weighted compact schemes and weno scheme. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(2): 336-347 (in Chinese) doi: 10.6052/0459-1879-15-190
    [15]
    Friedrichs O. Weighted essentially non-oscillatory schemes for the interpolation of mean values on unstructured grids. Journal of Computational Physics, 1998, 144(1): 194-212 doi: 10.1006/jcph.1998.5988
    [16]
    Hu C, Shu CW. Weighted essentially non-oscillatory schemes on triangular meshes. Journal of Computational Physics, 1999, 150(1): 97-127 doi: 10.1006/jcph.1998.6165
    [17]
    Wu CH, Wu L, Zhang SH. A smoothness indicator constant for sine functions. Journal of Computational Physics, 2020, 419: 109661 doi: 10.1016/j.jcp.2020.109661
    [18]
    Wu CH, Wu L, Li H, et al. Very high order WENO schemes using efficient smoothness indicators. Journal of Computational Physics, 2021, 432: 110158 doi: 10.1016/j.jcp.2021.110158
    [19]
    Pirozzoli S. On the spectral properties of shock-capturing schemes. Journal of Computational Physics, 2006, 219(2): 489-497 doi: 10.1016/j.jcp.2006.07.009
    [20]
    Don WS, Borges R. Accuracy of the weighted essentially non-oscillatory conservative finite difference schemes. Journal of Computational Physics, 2013, 250: 347-372 doi: 10.1016/j.jcp.2013.05.018
    [21]
    Lele SK. Compact difference schemes with spectral-like resolution. Journal of Computational Physics, 1992, 103(1): 16-42 doi: 10.1016/0021-9991(92)90324-R
    [22]
    Li XL, Leng Y, He ZW. Optimized sixth-order monotonicity-preserving scheme by nonlinear spectral analysis. International Journal for Numerical Methods in Fluids, 2013, 73(6): 560-577 doi: 10.1002/fld.3812
    [23]
    毛枚良, 燕振国, 刘化勇等. 高阶加权非线性格式的拟线性频谱分析方法研究. 空气动力学学报, 2015, 33(1): 1-9 (Mao Meiliang, Yan Zhenguo, Liu Huayong, et al. Study of quasi-linear spectral analysis method of high-order weighted nonlinear schemes. Acta Aerodynamica Sinica, 2015, 33(1): 1-9 (in Chinese)
    [24]
    Zhao S, Lardjane N, Fedioun I. Comparison of improved finite-difference WENO schemes for the implicit large eddy simulation of turbulent non-reacting and reacting high-speed shear flows. Computers and Fluids, 2014, 95: 74-87 doi: 10.1016/j.compfluid.2014.02.017
    [25]
    Li H, Luo Y, Zhang SH. Assessment of upwind/symmetric weno schemes for direct numerical simulation of screech tone in supersonic jet. Journal of Scientific Computing, 2021, 87: 3 doi: 10.1007/s10915-020-01407-6
    [26]
    李虎, 罗勇, 刘旭亮等. 一种面向激波噪声计算的加权优化紧致格式及非线性效应分析. 力学学报, 2022, 54(10): 2747-2759 (Li Hu, Luo Yong, Liu Xuliang, et al. A weighted-optimization compact scheme for shock-associated noise computation and its nonlinear effect analysis. Chinese Journal of Theoretical and Applied Mechanics., 2022, 54(10): 2747-2759 (in Chinese) doi: 10.6052/0459-1879-22-254
    [27]
    Cravero I, Puppo G, Semplice M, et al. Cool WENO schemes. Computers and Fluids, 2018, 169: 71-86 doi: 10.1016/j.compfluid.2017.07.022
    [28]
    Castro M, Costa B, Don WS. High order weighted essentially non-oscillatory WENO-Z schemes for hyperbolic conservation laws. Journal of Computational Physics, 2011, 230(5): 1766-1792 doi: 10.1016/j.jcp.2010.11.028
    [29]
    Balsara DS, Shu CW. Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high-order of accuracy. Journal of Computational Physics, 2000, 160(2): 405-452 doi: 10.1006/jcph.2000.6443
    [30]
    Baeza A, Burger R, Mulet P, et al. On the efficient computation of smoothness indicators for a class of a WENO reconstructions. Journal of Scientific Computing, 2019, 80: 1240-1263 doi: 10.1007/s10915-019-00974-7
    [31]
    刘旭亮, 武从海, 李虎等. WENO格式的一种新型光滑因子及其应用. 空气动力学学报, 2022, 40: 1-14 (Liu Xuliang, Wu Conghai, Li Hu, et al. A new type of smoothness indicator for weighted essentially non-oscillatory schemes and its application. Acta Aerodynamica Sinica, 2022, 40: 1-14 (in Chinese)
    [32]
    Rathan S, Raju GN, Bhise AA. Simple smoothness indicator WENO-Z scheme for hyperbolic conservation laws. Applied Numerical Mathematics, 2020, 157: 255-275
    [33]
    柳军, 刘伟, 曾明等. 高超声速三维热化学非平衡流场的数值模拟. 力学学报, 2003, 35(6): 730-734 (Liu Jun, Liu Wei, Zeng ming, et al. Numerical simulation of 3 D hypersonic thermochemical nonequilibrium flow. Chinese Journal of Theoretical and Applied Mechanics, 2003, 35(6): 730-734 (in Chinese) doi: 10.3321/j.issn:0459-1879.2003.06.011
    [34]
    王东红. 多介质流体界面追踪方法研究及误差分析. [博士论文]. 南京: 南京航空航天大学, 2014: 1-7

    Wang Donghong. Investigation of front tracking method for multi-component flow and error analysis. [PhD Thesis]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2014: 1-7 (in Chinese)
    [35]
    Hennessy JL, Patterson DA. 计算机体系结构量化研究方法(英文版第5版). 北京: 人民邮电出版社出版, 2013: 193-255

    (Hennessy JL, Patterson DA. Computer Architecture: A Quantitative Approach, Fifth Edition. Beijing: Morgan Kaufmann Publishers Inc, 2013: 193-255 (in Chinese))
    [36]
    Hardin JC, Ristorcelli JR, Tam CKW. Benchmark problems and solutions. ICASE/LaRC Workshop on Benchmark Problems in Computational Aeroacoustics, NASA CP-3300, 1995: 1-14
    [37]
    Zalesak ST. Fully multidimensional flux-corrected transport algorithms for fluids. Journal of Computational Physics, 1979, 31(3): 335-362 doi: 10.1016/0021-9991(79)90051-2
    [38]
    Liu XL, Zhang SH, Zhang HX, et al. A new class of central compact schemes with spectral-like resolution I: Linear schemes. Journal of Computational Physics, 2013, 248: 235-256
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(9)

    Article Metrics

    Article views (196) PDF downloads(55) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return