EI、Scopus 收录
中文核心期刊
Volume 55 Issue 2
Feb.  2023
Turn off MathJax
Article Contents
Huang Kaixuan, Ding Zhe, Zhang Yan, Li Xiaobai. Topological optimization design method of layer-wise graded lattice structures with high load-bearing. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(2): 433-444 doi: 10.6052/0459-1879-22-363
Citation: Huang Kaixuan, Ding Zhe, Zhang Yan, Li Xiaobai. Topological optimization design method of layer-wise graded lattice structures with high load-bearing. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(2): 433-444 doi: 10.6052/0459-1879-22-363

TOPOLOGICAL OPTIMIZATION DESIGN METHOD OF LAYER-WISE GRADED LATTICE STRUCTURES WITH HIGH LOAD-BEARING

doi: 10.6052/0459-1879-22-363
  • Received Date: 2022-08-08
  • Accepted Date: 2023-01-02
  • Available Online: 2023-01-03
  • Publish Date: 2023-02-18
  • With the rapid development of additive manufacturing technology, lattice structures have attracted extensive attention due to their excellent mechanical properties, such as high specific strength and high specific stiffness. However, the designs of lattice structures are mostly based on the assumption of uniform distribution, resulting in a relatively poor load-bearing capacity. This paper proposes a layer-wise graded lattice structure design method based on a topology optimization technology. Firstly, an explicit description model of lattice geometric configuration is established by using the level set function, and a shape interpolation technology is employed to generate the graded configurations of lattice cells. Secondly, a prediction model of macro effective mechanical property for these graded lattice cells is constructed based on the Kriging metamodel, achieving the essential relationship between the effective density of macro element and the effective mechanical property of micro lattice cell. Then, with the maximum stiffness of lattice structures as the optimization objective, the allowable material usage amount and structural system equilibrium equation as the constraint conditions, a layer-wise graded topology optimization model of lattice structures is established, which is solved numerically by using the OC algorithm. The numerical results indicate that the proposed method can realize the optimal layer-wise graded design of lattice structures, which not only fully improve the load bearing performance of lattice structures, but also ensure the geometric connectivity between different graded lattice cells. Finally, the quasi-static compression simulation analyses of the layer-wise graded lattice structures, the traditional uniform lattice structures and the linear graded lattice structures are carried out and discussed. The simulation results show that, compared with the traditional uniform lattice structures and the linear graded lattice structures, the loading capacity of the layer-wise graded lattice structures is significantly improved. The proposed method provides a theoretical reference for the design of high loading lattice structures.

     

  • loading
  • [1]
    Jia Z, Liu F, Jiang X, et al. Engineering lattice metamaterials for extreme property, programmability, and multifunctionality. Journal of Applied Physics, 2020, 127(15): 150901 doi: 10.1063/5.0004724
    [2]
    Jihong Z, Han Z, Chuang W, et al. A review of topology optimization for additive manufacturing: Status and challenges. Chinese Journal of Aeronautics, 2020, 34(1): 91-110
    [3]
    易长炎, 柏龙, 陈晓红等. 金属三维点阵结构拓扑构型研究及应用现状综述. 功能材料, 2017, 48(10): 10055-10065 (Yi Changyan, Bai long, Chen Xiaohong, et al. Review on the metal three-dimensional lattice topology configurations research and application status. Journal of Functional Materials, 2017, 48(10): 10055-10065 (in Chinese)
    [4]
    雷红帅, 赵则昂, 郭晓岗等. 航天器轻量化多功能结构设计与制造技术研究进展. 宇航材料工艺, 2021, 51(4): 10-22 (Lei Hongshuai, Zhao Zegang, Guo Xiaogang, et al. Research progress on the design and manufacture technology of lightweight multifunctional spacecraft structures. Aerospace Materials & Technology, 2021, 51(4): 10-22 (in Chinese) doi: 10.12044/j.issn.1007-2330.2021.04.002
    [5]
    陶斯嘉, 王小锋, 曾婧等. 点阵材料及其3D打印. 中国有色金属学报, 2022, 32(2): 416-444 (Tao Sijia, Wang Xiaofeng, Zeng Jing, et al. Lattice materials and its fabrication by 3D printing: A review. The Chinese Journal of Nonferrous Metals, 2022, 32(2): 416-444 (in Chinese)
    [6]
    Shuheng W, Yongbin M, Zichen D. Two-node method for the effective elastic modulus of periodic cellular truss materials and experiment verification via stereolithography. European Journal of Mechanics - A/Solids, 2020, 87: 104201
    [7]
    Jung A, Diebels S. Microstructural characterisation and experimental determination of a multiaxial yield surface for open-cell aluminium foams. Materials & Design, 2017, 131: 252-264
    [8]
    Nazir A, Abate KM, Kumar A, et al. A state-of-the-art review on types, design, optimization, and additive manufacturing of cellular structures. The International Journal of Advanced Manufacturing Technology, 2019, 104(9): 3489-3510
    [9]
    Bai L, Yi C, Chen X, et al. Effective design of the graded strut of bcc lattice structure for improving mechanical properties. Materials, 2019, 12(13): 2192 doi: 10.3390/ma12132192
    [10]
    El-Sayed MA, Essa K, Ghazy M, et al. Design optimization of additively manufactured titanium lattice structures for biomedical implants. The International Journal of Advanced Manufacturing Technology, 2020, 110(9): 2257-2268
    [11]
    王书恒, 戴时, 吴鑫伟等. 考虑材料各向异性的熔丝制造PLA点阵结构弹性各向同性设计. 力学学报, 2022, 54(5): 1291-1302 (Wang Shuheng, Dai Shi, Wu Xinwei, et al. Design of elastically isotropic PLA lattice strucrure in fused filament fabrication considering material anisotropy. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(5): 1291-1302 (in Chinese) doi: 10.6052/0459-1879-22-031
    [12]
    徐世鹏, 丁晓红, 段朋云等. 考虑时变刚度特性的复合材料微结构拓扑优化设计方法. 力学学报, 2022, 54(1): 134-146 (Xu Shipeng, Ding Xiaohong, Duan Pengyun, et al. Topology optimization of composite material microstructure considering time-changeable stiffness. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(1): 134-146 (in Chinese) doi: 10.6052/0459-1879-21-395
    [13]
    Seharing A, Azman AH, Abdullah S. A review on integration of lightweight gradient lattice structures in additive manufacturing parts. Advances in Mechanical Engineering, 2020, 12(6): 1-21
    [14]
    Yu S, Sun J, Bai J. Investigation of functionally graded TPMS structures fabricated by additive manufacturing. Materials & Design, 2019, 182: 108021
    [15]
    Peng Z, Dexing Q, Rui X, et al. Mechanical design and energy absorption performances of rational gradient lattice metamaterials. Composite Structures, 2021, 277: 114606 doi: 10.1016/j.compstruct.2021.114606
    [16]
    Dumas M, Terriault P, Brailovski V. Modelling and characterization of a porosity graded lattice structure for additively manufactured biomaterials. Materials & Design, 2017, 121: 383-392
    [17]
    Liu F, Mao Z, Zhang P, et al. Functionally graded porous scaffolds in multiple patterns: New design method, physical and mechanical properties. Materials & Design, 2018, 160: 849-860
    [18]
    Sanjairaj V, Zhang L, Zhang S, et al. Triply periodic minimal surfaces sheet scaffolds for tissue engineering applications: An optimization approach toward biomimetic scaffold design. ACS Applied Bio Materials, 2018, 1(2): 259-269 doi: 10.1021/acsabm.8b00052
    [19]
    Bai L, Gong C, Chen X, et al. Mechanical properties and energy absorption capabilities of functionally graded lattice structures: Experiments and simulations. International Journal of Mechanical Sciences, 2020, 182: 105735 doi: 10.1016/j.ijmecsci.2020.105735
    [20]
    Chamini R, Shanqing X, Yvonne D, et al. Crushing behavior of functionally graded lattice. JOM, 2021, 73(12): 4130-4140 doi: 10.1007/s11837-021-04946-x
    [21]
    Li H, Luo Z, Gao L, et al. Topology optimization for functionally graded cellular composites with metamaterials by level sets. Computer Methods in Applied Mechanics and Engineering, 2018, 328: 340-364 doi: 10.1016/j.cma.2017.09.008
    [22]
    Sigmund O, Maute K. Topology optimization approaches. Structural and Multidisciplinary Optimization, 2013, 48(6): 1031-1055 doi: 10.1007/s00158-013-0978-6
    [23]
    廖中源, 王英俊, 王书亭. 基于拓扑优化的变密度点阵结构体优化设计方法. 机械工程学报, 2019, 55(8): 65-72 (Liao Zhongyuan, Wang Yingjun, Wang Shuting, et al. Graded-density lattice structures optimization design based on topology optimization. Journal of Mechanical Engineering, 2019, 55(8): 65-72 (in Chinese) doi: 10.3901/JME.2019.08.065
    [24]
    蔡金虎, 王春洁. 基于映射的梯度点阵结构设计方法. 振动与冲击, 2020, 39(20): 74-81 (Cai Jinhu, Wang Chunjie. A graded lattice structures design method based on mapping progress. Journal of Vibration and Shock, 2020, 39(20): 74-81 (in Chinese) doi: 10.13465/j.cnki.jvs.2020.20.010
    [25]
    赵芳垒, 敬石开, 刘晨燕. 基于局部相对密度映射的变密度多孔结构设计方法. 机械工程学报, 2018, 54(19): 121-128 (Zhao Fanglei, Jing Shikai, Liu Chenyan. Variable density cellular structure design method base on local relative density mapping. Journal of Mechanical Engineering, 2018, 54(19): 121-128 (in Chinese) doi: 10.3901/JME.2018.19.121
    [26]
    侯淑娟, 梁慧妍, 汪全中等. 基于迭代法的非线性弹性均质化研究. 力学学报, 2018, 50(4): 837-846 (Hou Shujuan, Liang Huiyan, Wang Quanzhong, et al. Study on nonlinear elastic homogenization with iterative method. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(4): 837-846 (in Chinese) doi: 10.6052/0459-1879-18-039
    [27]
    Zadpoor AA. Mechanical performance of additively manufactured meta-biomaterials. Acta Biomaterialia, 2018, 85: 41-59
    [28]
    Lei Y, Massimiliano F, Raya M, et al. An investigation into the effect of gradients on the manufacturing fidelity of triply periodic minimal surface structures with graded density fabricated by selective laser melting. Journal of Materials Processing Tech, 2019, 275: 116367
    [29]
    Chu S, Gao L, Xiao M, et al. Design of sandwich panels with truss cores using explicit topology optimization. Composite Structures, 2018, 210: 892-905
    [30]
    付君健, 舒正涛, 田启华等. 功能梯度多孔结构拓扑优化的混合水平集方法. 机械工程学报, 2022, 48: 1-12 (Fu Junjian, Shu Zhengtao, Tian Qihua, et al. A hybrid level set method for topology optimization of functionally graded cellular structures. Journal of Mechanical Engineering, 2022, 48: 1-12 (in Chinese)
    [31]
    郭旭, 赵康. 基于拓扑描述函数的连续体结构拓扑优化方法. 力学学报, 2004, 36(5): 520-526 (Guo Xu, Zhao Kang. A new topology description function based approach for structural topology optimization. Chinese Journal of Theoretical and Applied Mechanics, 2004, 36(5): 520-526 (in Chinese) doi: 10.3321/j.issn:0459-1879.2004.05.002
    [32]
    赵丹阳, 刘韬, 李红霞等. 可降解聚合物血管支架结构优化设计. 力学学报, 2017, 49(6): 1409-1417 (Zhao Danyang, Liu Tao, Li Hongxia, et al. Optimization design of degraable polymer vascular stent structure. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(6): 1409-1417 (in Chinese) doi: 10.6052/0459-1879-17-214
    [33]
    Zhang Y, Li H, Xiao M, et al. Concurrent topology optimization for cellular structures with nonuniform microstructures based on the kriging metamodel. Structural and Multidisciplinary Optimization, 2019, 59(4): 1273-1299 doi: 10.1007/s00158-018-2130-0
    [34]
    Zhang Y, Zhang L, Ding Z, et al. A multiscale topological design method of geometrically asymmetric porous sandwich structures for minimizing dynamic compliance. Materials & Design, 2022, 214: 110404
    [35]
    Mi X, Xiliang L, Yan Z, et al. Design of graded lattice sandwich structures by multiscale topology optimization. Computer Methods in Applied Mechanics and Engineering, 2021, 384: 113949 doi: 10.1016/j.cma.2021.113949
    [36]
    Xiliang L, Liang G, Mi X, et al. Kriging-assisted design of functionally graded cellular structures with smoothly-varying lattice unit cells. Computer Methods in Applied Mechanics and Engineering, 2022, 390: 114466 doi: 10.1016/j.cma.2021.114466
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(17)  / Tables(4)

    Article Metrics

    Article views (947) PDF downloads(138) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return