Citation: | Wu Runlong, Li Zhujun, Ding Hang. Impact of a planar shock onto side-by-side droplets: A 3D numerical study. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(11): 2958-2969 doi: 10.6052/0459-1879-22-358 |
[1] |
Taylor GI. The shape and acceleration of a drop in a high-speed air stream. The Scientific Papers of GI Taylor, 1963, 3: 457-464
|
[2] |
Harper EY, Grube GW, Chang ID. On the breakup of accelerating liquid drops. Journal of Fluid Mechanics, 1972, 52(3): 565-591
|
[3] |
Hinze JO. Fundamentals of the hydrodynamic mechanism of splitting in dispersion processes. AIChE Journal, 1955, 1(3): 289-295 doi: 10.1002/aic.690010303
|
[4] |
陆守香, 秦友花. 激波诱导的液滴变形和破碎. 高压物理学报, 2000, 14(2): 151-154 (Lu Shouxiang, Qin Youhua. Deformation and breakup of droplets behind shock wave. Chinese Journal of High Pressure Physics, 2000, 14(2): 151-154 (in Chinese)
|
[5] |
Pilch M, Erdman CA. Use of breakup time data and velocity history data to predict the maximum size of stable fragments for acceleration-induced breakup of a liquid drop. International Journal of Multiphase Flow, 1987, 13: 741-757 doi: 10.1016/0301-9322(87)90063-2
|
[6] |
Guildenbecher D, Lopez-Rivera C, Sojka P. Secondary atomization. Experiments in Fluids, 2009, 46(3): 371-402 doi: 10.1007/s00348-008-0593-2
|
[7] |
Gelfand BE. Droplet breakup phenomena in flows with velocity lag. Progress in Energy and Combustion Science, 1996, 22(3): 201-265 doi: 10.1016/S0360-1285(96)00005-6
|
[8] |
Wierzba A. Deformation and breakup of liquid drops in a gas stream at nearly critical weber numbers. Experiments in Fluids, 1990, 9(1): 59-64
|
[9] |
Dai Z, Faeth GM. Temporal properties of secondary drop breakup in the multimode breakup regime. International Journal of Multiphase Flow, 2001, 27(2): 217-236 doi: 10.1016/S0301-9322(00)00015-X
|
[10] |
杨威, 贾明, 孙凯等. 液滴变形-袋式-多模式破碎转换研究. 工程热物理学报, 2017, 38(2): 416-420 (Yang Wei, Jia Meng, Sun Kai, et al. Investigation on transitions of deformation-bag-multimode breakup for liquid droplets. Journal of Engineering Thermophysics, 2017, 38(2): 416-420 (in Chinese)
|
[11] |
Hanson AR, Domich EG, Adams HS. Shock tube investigation of the breakup of drops by air blasts. Physics of Fluids, 1963, 6: 1070-1080 doi: 10.1063/1.1706864
|
[12] |
Nicholls JA, Ranger AA. Aerodynamic shattering of liquid drops. AIAA Journal, 1969, 7(2): 285-290 doi: 10.2514/3.5087
|
[13] |
楼建锋, 洪滔, 朱建士. 液滴在气体介质中剪切破碎的数值模拟研究. 计算力学学报, 2011, 28(2): 210-213 (Lou Jianfeng, Hong Tao, Zhu Jianshi. Numerical study on shearing breakup of liquid droplets in gas medium. Chinese Journal of Computational Mechanics, 2011, 28(2): 210-213 (in Chinese)
|
[14] |
Waldman GD, Reinecke WG, Glenn DC. Raindrop breakup in the shock layer of a high-speed vehicle. AIAA Journal, 1972, 10(9): 1200-1204 doi: 10.2514/3.50350
|
[15] |
Simpkins PG, Bales EL. Water-drop response to sudden accelerations. Journal of Fluid Mechanics, 1972, 55(4): 629-639 doi: 10.1017/S0022112072002058
|
[16] |
Joseph DD, Belanger J, Beavers GS. Breakup of a liquid drop suddenly exposed to a high-speed airstream. International Journal of Multiphase Flow, 1999, 25(6): 1263-1303
|
[17] |
耿继辉, 叶经方, 王健等. 激波诱导液滴变形和破碎现象实验研究. 工程热物理学报, 2003, 24(5): 797-800 (Geng Jihui, Ye Jingfang, Wang Jian, et al. Experimental investigation on phenomena of shock wave-induced droplet deformation and breakup. Journal of Engineering Thermophysics, 2003, 24(5): 797-800 (in Chinese)
|
[18] |
Theofanous TG, Li GJ, Dinh TN. Aerobreakup in rarefied supersonic gas flows. Journal of Fluids Engineering, 2004, 126(4): 516-527 doi: 10.1115/1.1777234
|
[19] |
Liu Z, Reitz RD. An analysis of the distortion and breakup mechanisms of high speed liquid drops. International Journal of Multiphase Flow, 1997, 23(4): 631-650 doi: 10.1016/S0301-9322(96)00086-9
|
[20] |
Theofanous TG, Li GJ. On the physics of aerobreakup. Physics of Fluids, 2008, 20(5): 52-103
|
[21] |
Sembian S, Liverts M, Tillmark N, et al. Plane shock wave interaction with a cylindrical water column. Physics of Fluids, 2016, 28(5): 56-102
|
[22] |
Meng JC, Colonius T. Numerical simulation of the aerobreakup of a water droplet. Journal of Fluid Mechanics, 2018, 835: 1108-1135 doi: 10.1017/jfm.2017.804
|
[23] |
Liu N, Wang ZG, Sun MB, et al. Numerical simulation of liquid droplet breakup in supersonic flows. Acta Astronautica, 2018, 145: 116-130 doi: 10.1016/j.actaastro.2018.01.010
|
[24] |
Dorschner B, Biasiori-Poulanges L, Schmidmayer K, et al. On the formation and recurrent shedding of ligaments in droplet aerobreakup. Journal of Fluid Mechanics. 2020, 904(A20): 2020699
|
[25] |
Yoshida T, Wierzba A, Takayama K. Breakup and interaction of two droplets columns in a shock wave induced high-speed air flow. Transactions of the Japan Society of Mechanical Engineers, 1989, 55(514): 1607-1612 doi: 10.1299/kikaib.55.1607
|
[26] |
Igra D, Takayama K. Experimental investigation of two cylindrical water columns subjected to planar shock wave loading. Journal of Fluids Engineering, 2003, 125(2): 325-331 doi: 10.1115/1.1538628
|
[27] |
Chen H, Liang SM. Flow visualization of shock/water column interactions. Shock Waves, 2008, 17(5): 309-321 doi: 10.1007/s00193-007-0115-9
|
[28] |
Nourgaliev RR, Din TN, Theofanous TG. Adaptive characteristics-based matching for compressible multifluid dynamics. Journal of Computational Physics, 2006, 213: 500-529 doi: 10.1016/j.jcp.2005.08.028
|
[29] |
Chang CH, Deng X, Theofanous TG. Direct numerical simulation of interfacial instabilities: A consistent, conservative, all-speed, sharp-interface method. Journal of Computational Physics, 2013, 242: 946-990 doi: 10.1016/j.jcp.2013.01.014
|
[30] |
Shen Y, Ren Y, Ding H. A 3D conservative sharp interface method for simulation of compressible two-phase flows. Journal of Computational Physics, 2020, 403: 109107 doi: 10.1016/j.jcp.2019.109107
|
[31] |
Osher S, Sethian JA. Fronts propagating with curvature dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics, 1988, 79: 12-49 doi: 10.1016/0021-9991(88)90002-2
|
[32] |
林健宇. 切割网格方法及激波与气泡相互作用研究. [博士论文]. 合肥: 中国科学技术大学, 2016
Lin Jianyu. Development of cut-cell method and dynamics of shock-bubble interactions. [PhD Thesis]. Hefei: University of Science and Technology of China, 2016 (in Chinese)
|
[33] |
沈毅. 守恒型尖锐界面方法及激波诱导的含泡液滴演化动力学. [博士论文]. 合肥: 中国科学技术大学, 2020
Shen Yi. Conservative sharp interface method and shock-induced dynamics of droplet containing a bubble. [PhD Thesis]. Hefei: University of Science and Technology of China, 2020 (in Chinese)
|
[34] |
Liou MS. A sequel to AUSM, part ii: AUSM+-up for all speeds. Journal of Computational Physics, 2006, 214(1): 137-170 doi: 10.1016/j.jcp.2005.09.020
|
[35] |
Osher S, Fedkiw R. Level Set Methods and Dynamic Implicit Surfaces. New York: Springer, 2003: 17-90
|
[36] |
Sussman M, Smereka P, Osher S. A level set approach for computing solutions to incompressible two-phase flow. Journal of Computational Physics, 1994, 114(1): 146-159 doi: 10.1006/jcph.1994.1155
|
[37] |
Russo G, Smereka P. A remark on computing distance functions. Journal of Computational Physics, 2000, 163(1): 51-67 doi: 10.1006/jcph.2000.6553
|
[38] |
Min C. On reinitializing level set functions. Journal of Computational Physics, 2010, 229(8): 2764-2772 doi: 10.1016/j.jcp.2009.12.032
|
[39] |
Theofanous TG, Mitkin VV, Ng CL, et al. The physics of aerobreakup ii. viscous liquids. Physics of Fluids, 2012, 24(2): 22-104
|