EI、Scopus 收录
Volume 54 Issue 11
Nov.  2022
Turn off MathJax
Article Contents
Wu Runlong, Li Zhujun, Ding Hang. Impact of a planar shock onto side-by-side droplets: A 3D numerical study. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(11): 2958-2969 doi: 10.6052/0459-1879-22-358
Citation: Wu Runlong, Li Zhujun, Ding Hang. Impact of a planar shock onto side-by-side droplets: A 3D numerical study. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(11): 2958-2969 doi: 10.6052/0459-1879-22-358


doi: 10.6052/0459-1879-22-358
  • Received Date: 2022-08-05
  • Accepted Date: 2022-09-30
  • Available Online: 2022-10-01
  • Publish Date: 2022-11-18
  • In this paper we investigate the evolution dynamics of side-by-side droplets after being impacted by a planar shock by using a three-dimensional conservative sharp interface method. Our research mainly focuses on the development of wave structures after the shock impact and the asymmetric interface evolution of single droplet induced by the coupling between the side-by-side droplets. Firstly, we analyze the development of the wave system including those inside and outside the channel between the side-by-side droplets. We find that at the early stage of impact, the intersection of reflected shock waves accounts for the formation of new reflected shock waves and Mach rods. This is quite different from the curved wave front formed by the reflected shock wave on the other side of the droplet transversely opposite to the channel. The difference of the flow field on the two sides of the droplet is responsible for the asymmetric interface evolution of the droplet in the middle stage of the droplet-shock interaction. Secondly, we investigate the interface morphology and its evolution in the middle stage of shock impact, especially when the incident shock wave moves to the downstream of and is far away from the droplets, and report the occurrence of new flow phenomena at the downstream outlet of the channel, such as interface coalescence caused by airflow expansion and subsequent interface fragmentation owing to airflow blockage. Finally, the effect of the gap between the side-by-side droplets on the droplet interaction is studied. We find that the gap size has a significant effect on the occurrence of pressure peaks in the channel. Specifically, a smaller gap not only brings higher pressure peak, but also makes the peak appear at an earlier time.


  • loading
  • [1]
    Taylor GI. The shape and acceleration of a drop in a high-speed air stream. The Scientific Papers of GI Taylor, 1963, 3: 457-464
    Harper EY, Grube GW, Chang ID. On the breakup of accelerating liquid drops. Journal of Fluid Mechanics, 1972, 52(3): 565-591
    Hinze JO. Fundamentals of the hydrodynamic mechanism of splitting in dispersion processes. AIChE Journal, 1955, 1(3): 289-295 doi: 10.1002/aic.690010303
    陆守香, 秦友花. 激波诱导的液滴变形和破碎. 高压物理学报, 2000, 14(2): 151-154 (Lu Shouxiang, Qin Youhua. Deformation and breakup of droplets behind shock wave. Chinese Journal of High Pressure Physics, 2000, 14(2): 151-154 (in Chinese)
    Pilch M, Erdman CA. Use of breakup time data and velocity history data to predict the maximum size of stable fragments for acceleration-induced breakup of a liquid drop. International Journal of Multiphase Flow, 1987, 13: 741-757 doi: 10.1016/0301-9322(87)90063-2
    Guildenbecher D, Lopez-Rivera C, Sojka P. Secondary atomization. Experiments in Fluids, 2009, 46(3): 371-402 doi: 10.1007/s00348-008-0593-2
    Gelfand BE. Droplet breakup phenomena in flows with velocity lag. Progress in Energy and Combustion Science, 1996, 22(3): 201-265 doi: 10.1016/S0360-1285(96)00005-6
    Wierzba A. Deformation and breakup of liquid drops in a gas stream at nearly critical weber numbers. Experiments in Fluids, 1990, 9(1): 59-64
    Dai Z, Faeth GM. Temporal properties of secondary drop breakup in the multimode breakup regime. International Journal of Multiphase Flow, 2001, 27(2): 217-236 doi: 10.1016/S0301-9322(00)00015-X
    杨威, 贾明, 孙凯等. 液滴变形-袋式-多模式破碎转换研究. 工程热物理学报, 2017, 38(2): 416-420 (Yang Wei, Jia Meng, Sun Kai, et al. Investigation on transitions of deformation-bag-multimode breakup for liquid droplets. Journal of Engineering Thermophysics, 2017, 38(2): 416-420 (in Chinese)
    Hanson AR, Domich EG, Adams HS. Shock tube investigation of the breakup of drops by air blasts. Physics of Fluids, 1963, 6: 1070-1080 doi: 10.1063/1.1706864
    Nicholls JA, Ranger AA. Aerodynamic shattering of liquid drops. AIAA Journal, 1969, 7(2): 285-290 doi: 10.2514/3.5087
    楼建锋, 洪滔, 朱建士. 液滴在气体介质中剪切破碎的数值模拟研究. 计算力学学报, 2011, 28(2): 210-213 (Lou Jianfeng, Hong Tao, Zhu Jianshi. Numerical study on shearing breakup of liquid droplets in gas medium. Chinese Journal of Computational Mechanics, 2011, 28(2): 210-213 (in Chinese)
    Waldman GD, Reinecke WG, Glenn DC. Raindrop breakup in the shock layer of a high-speed vehicle. AIAA Journal, 1972, 10(9): 1200-1204 doi: 10.2514/3.50350
    Simpkins PG, Bales EL. Water-drop response to sudden accelerations. Journal of Fluid Mechanics, 1972, 55(4): 629-639 doi: 10.1017/S0022112072002058
    Joseph DD, Belanger J, Beavers GS. Breakup of a liquid drop suddenly exposed to a high-speed airstream. International Journal of Multiphase Flow, 1999, 25(6): 1263-1303
    耿继辉, 叶经方, 王健等. 激波诱导液滴变形和破碎现象实验研究. 工程热物理学报, 2003, 24(5): 797-800 (Geng Jihui, Ye Jingfang, Wang Jian, et al. Experimental investigation on phenomena of shock wave-induced droplet deformation and breakup. Journal of Engineering Thermophysics, 2003, 24(5): 797-800 (in Chinese)
    Theofanous TG, Li GJ, Dinh TN. Aerobreakup in rarefied supersonic gas flows. Journal of Fluids Engineering, 2004, 126(4): 516-527 doi: 10.1115/1.1777234
    Liu Z, Reitz RD. An analysis of the distortion and breakup mechanisms of high speed liquid drops. International Journal of Multiphase Flow, 1997, 23(4): 631-650 doi: 10.1016/S0301-9322(96)00086-9
    Theofanous TG, Li GJ. On the physics of aerobreakup. Physics of Fluids, 2008, 20(5): 52-103
    Sembian S, Liverts M, Tillmark N, et al. Plane shock wave interaction with a cylindrical water column. Physics of Fluids, 2016, 28(5): 56-102
    Meng JC, Colonius T. Numerical simulation of the aerobreakup of a water droplet. Journal of Fluid Mechanics, 2018, 835: 1108-1135 doi: 10.1017/jfm.2017.804
    Liu N, Wang ZG, Sun MB, et al. Numerical simulation of liquid droplet breakup in supersonic flows. Acta Astronautica, 2018, 145: 116-130 doi: 10.1016/j.actaastro.2018.01.010
    Dorschner B, Biasiori-Poulanges L, Schmidmayer K, et al. On the formation and recurrent shedding of ligaments in droplet aerobreakup. Journal of Fluid Mechanics. 2020, 904(A20): 2020699
    Yoshida T, Wierzba A, Takayama K. Breakup and interaction of two droplets columns in a shock wave induced high-speed air flow. Transactions of the Japan Society of Mechanical Engineers, 1989, 55(514): 1607-1612 doi: 10.1299/kikaib.55.1607
    Igra D, Takayama K. Experimental investigation of two cylindrical water columns subjected to planar shock wave loading. Journal of Fluids Engineering, 2003, 125(2): 325-331 doi: 10.1115/1.1538628
    Chen H, Liang SM. Flow visualization of shock/water column interactions. Shock Waves, 2008, 17(5): 309-321 doi: 10.1007/s00193-007-0115-9
    Nourgaliev RR, Din TN, Theofanous TG. Adaptive characteristics-based matching for compressible multifluid dynamics. Journal of Computational Physics, 2006, 213: 500-529 doi: 10.1016/j.jcp.2005.08.028
    Chang CH, Deng X, Theofanous TG. Direct numerical simulation of interfacial instabilities: A consistent, conservative, all-speed, sharp-interface method. Journal of Computational Physics, 2013, 242: 946-990 doi: 10.1016/j.jcp.2013.01.014
    Shen Y, Ren Y, Ding H. A 3D conservative sharp interface method for simulation of compressible two-phase flows. Journal of Computational Physics, 2020, 403: 109107 doi: 10.1016/j.jcp.2019.109107
    Osher S, Sethian JA. Fronts propagating with curvature dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics, 1988, 79: 12-49 doi: 10.1016/0021-9991(88)90002-2
    林健宇. 切割网格方法及激波与气泡相互作用研究. [博士论文]. 合肥: 中国科学技术大学, 2016

    Lin Jianyu. Development of cut-cell method and dynamics of shock-bubble interactions. [PhD Thesis]. Hefei: University of Science and Technology of China, 2016 (in Chinese)
    沈毅. 守恒型尖锐界面方法及激波诱导的含泡液滴演化动力学. [博士论文]. 合肥: 中国科学技术大学, 2020

    Shen Yi. Conservative sharp interface method and shock-induced dynamics of droplet containing a bubble. [PhD Thesis]. Hefei: University of Science and Technology of China, 2020 (in Chinese)
    Liou MS. A sequel to AUSM, part ii: AUSM+-up for all speeds. Journal of Computational Physics, 2006, 214(1): 137-170 doi: 10.1016/j.jcp.2005.09.020
    Osher S, Fedkiw R. Level Set Methods and Dynamic Implicit Surfaces. New York: Springer, 2003: 17-90
    Sussman M, Smereka P, Osher S. A level set approach for computing solutions to incompressible two-phase flow. Journal of Computational Physics, 1994, 114(1): 146-159 doi: 10.1006/jcph.1994.1155
    Russo G, Smereka P. A remark on computing distance functions. Journal of Computational Physics, 2000, 163(1): 51-67 doi: 10.1006/jcph.2000.6553
    Min C. On reinitializing level set functions. Journal of Computational Physics, 2010, 229(8): 2764-2772 doi: 10.1016/j.jcp.2009.12.032
    Theofanous TG, Mitkin VV, Ng CL, et al. The physics of aerobreakup ii. viscous liquids. Physics of Fluids, 2012, 24(2): 22-104
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article Metrics

    Article views (336) PDF downloads(139) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint