STUDY ON FOLDING STABILITY OF ORIGAMI METAMATERIALS
-
-
Abstract
Origami metamaterials can regulate and control macroscopic deformation by continuous deformation of their internal microstructure. Hence, mechanical properties such as Poisson's ratio, stiffness, and modulus of the metamaterials can be adjusted and designed. This work theoretically studied the mechanical behavior of origami metamaterials under the synergy of complex internal configuration and folding motion, with the methods of torsion spring equivalent and energy principle. Here, we established a mechanical model to describe the folding deformation of the metamaterials, and analyzed the influence of geometric parameters on external loading. Through parameter analysis, it is found that the external loading exhibits monotonicity during the unfolding process and does not have stability. The external loading can show three situations such as monotonicity, mono-stability and bi-stability during the folding process, which are closely related to the parameters. This work provides important guidance to origami metamaterials for improving the design of the configuration and the regulation of their performance.
-
-