Citation: | Han Lei, Wang Xintong, Li Luxian. Complete constitutive relation of hyperelastic materials for Treloar’s experimental data. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(12): 3444-3455. DOI: 10.6052/0459-1879-22-317 |
[1] |
Nkenfack AN, Beda T, Feng ZQ, et al. HIA: A hybrid integral approach to model incompressible isotropic hyperelastic materials—Part 1: Theory. International Journal of Non-Linear Mechanics, 2016, 84: 1-11 doi: 10.1016/j.ijnonlinmec.2016.04.005
|
[2] |
Lu Y, Gu ZX, Yin ZN, et al. New compressible hyper-elastic models for rubberlike materials. Acta Mechanica, 2015, 226(12): 4059-4072 doi: 10.1007/s00707-015-1475-3
|
[3] |
郭辉, 胡文军, 陶俊林. 泡沫橡胶材料的超弹性本构模型. 计算力学, 2013, 30(4): 575-579 (Guo Hui, Hu Wenjun, Tao Junlin. The superelasticty constitutive model for foam rubber materials. Chinese Journal of Computational Mechanics, 2013, 30(4): 575-579 (in Chinese)
|
[4] |
Boyce MC, Arruda EM. Constitutive models of rubber elasticity: A review. Rubber Chemistry and Technology, 2000, 73(3): 504-523 doi: 10.5254/1.3547602
|
[5] |
Dal H, Acikgoz K, Badienia Y. On the performance of isotropic hyperelastic constitutive models for rubber-like materials: A state of the art review. Applied Mechanics Reviews, 2021, 73(2): 020802 doi: 10.1115/1.4050978
|
[6] |
Steinmann P, Hossain M, Possart G. Hyperelastic materials behavior modeling using consistent strain energy density functions. Archive of Applied Mechanics, 2012, 82(9): 1183-1217 doi: 10.1007/s00419-012-0610-z
|
[7] |
Bazkiaei AK, Shirazi KH, Shishesaz M. A framework for model base hyperelastic material simulation. Journal of Rubber Research, 2020, 23(4): 287-299 doi: 10.1007/s42464-020-00057-5
|
[8] |
Beda T. Reconciling the fundamental phenomenological expression of the strain energy of rubber with established experimental facts. Journal of Polymer Science Part B: Polymer Physics, 2005, 43(2): 125-134 doi: 10.1002/polb.20308
|
[9] |
Nunes LCS. Mechanical characterization of hyperelastic polydimethylsiloxane by simple shear test. Materials Science and Engineering A, 2011, 528(3): 1799-1804 doi: 10.1016/j.msea.2010.11.025
|
[10] |
彭向峰, 李录贤. 超弹性材料本构关系的最新研究进展. 力学学报, 2020, 52(5): 1221-1234 (Peng Xiangfeng, Li Luxian. State of the art of constitutive relations of hyperelastic materials. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(5): 1221-1234 (in Chinese) doi: 10.6052/0459-1879-20-189
|
[11] |
Khodadadi A, Liaghat G, Ahmadi H, et al. Numerical and experimental study of impact on hyperelastic rubber panels. Iranian Polymer Journal, 2019, 28(2): 113-122 doi: 10.1007/s13726-018-0682-x
|
[12] |
Shahzad M, Kamran A, Siddiqui MZ, et al. Mechanical characterization and FE modelling of a hyperelastic material. Materials Research, 2015, 18(5): 918-924 doi: 10.1590/1516-1439.320414
|
[13] |
Destrade M, Saccomandi G, Sgura I. Methodical fitting for mathematical models of rubber-like materials. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2017, 473(2198): 20160811 doi: 10.1098/rspa.2016.0811
|
[14] |
Han L, Peng XF, Li LX. Entire-region constitutive relation for Treloar’s data. Rubber Chemistry and Technology, 2022, 95(1): 119-127 doi: 10.5254/rct.21.78993
|
[15] |
魏志刚, 陈海波. 一种新的橡胶材料弹性本构模型. 力学学报, 2019, 51(2): 473-483 (Wei Zhigang, Chen Haibo. A new elastic model for rubber-like materials. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 473-483 (in Chinese) doi: 10.6052/0459-1879-18-303
|
[16] |
Hossain M, Steinmann P. More hyperelastic models for rubber-like materials: consistent tangent operators and comparative study. Journal of the Mechanical Behavior of Materials, 2013, 22(1-2): 27-50 doi: 10.1515/jmbm-2012-0007
|
[17] |
Arruda EM, Boyce MC. A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials. Journal of the Mechanics and Physics of Solids, 1993, 41(2): 389-412 doi: 10.1016/0022-5096(93)90013-6
|
[18] |
Marckmann G, Verron E. Comparison of hyperelastic models for rubber-like materials. Rubber Chemistry and Technology, 2006, 79(5): 835-858 doi: 10.5254/1.3547969
|
[19] |
Bien-Aimé LKM, Blaise BB, Beda T. Characterization of hyperelastic deformation behavior of rubber-like materials. SN Applied Sciences, 2020, 2(4): 1-10
|
[20] |
Blaise BB, Bien-Aimé LKM, Betchewe G, et al. A phenomenological expression of strain energy in large elastic deformations of isotropic materials. Iranian Polymer Journal, 2020, 29(6): 525-533 doi: 10.1007/s13726-020-00816-6
|
[21] |
Darijani H, Naghdabadi R. Hyperelastic materials behavior modeling using consistent strain energy density functions. Acta Mechanica, 2010, 213(3): 235-254
|
[22] |
Mansouri MR, Darijani H. Constitutive modeling of isotropic hyperelastic materials in an exponential framework using a self-contained approach. International Journal of Solids and Structures, 2014, 51(25-26): 4316-4326 doi: 10.1016/j.ijsolstr.2014.08.018
|
[23] |
Doğan Kİ. A hyperelastic constitutive model for rubber-like materials. Archive of Applied Mechanics, 2020, 90(3): 615-622 doi: 10.1007/s00419-019-01629-7
|
[24] |
Bahreman M, Darijani H, Fooladi M. Constitutive modeling of isotropic hyperelastic materials using proposed phenomenological models in terms of strain invariants. Polymer Engineering and Science, 2016, 56(3): 299-308 doi: 10.1002/pen.24255
|
[25] |
李雪冰, 危银涛. 一种改进的Yeoh超弹性材料本构模型. 工程力学, 2016, 33(12): 38-43 (Li Xuebing, Wei Yintao. An improved Yeoh constitutive model for hyperelastic material. Engineering Mechanics, 2016, 33(12): 38-43 (in Chinese) doi: 10.6052/j.issn.1000-4750.2015.05.0388
|
[26] |
Carroll MM. A strain energy function for vulcanized rubbers. Journal of Elasticity, 2011, 103(2): 173-187 doi: 10.1007/s10659-010-9279-0
|
[27] |
徐中明, 袁泉, 张志飞等. 基于超静定方程的橡胶材料本构模型参数识别. 重庆大学学报, 2017, 40(2): 1-9 (Xu Zhongming, Yuan Quan, Zhang Zhifei, et al. Parameter identification of constitutive models of rubber material based on hyperstatic equations. Journal of Chongqing University, 2017, 40(2): 1-9 (in Chinese) doi: 10.11835/j.issn.1000-582X.2017.02.001
|
[28] |
肖锐, 向玉海, 钟旦明等. 考虑缠结效应的超弹性本构模型. 力学学报, 2021, 53(4): 1028-1037 (Xiao Rui, Xiang Yuhai, Zhong Danming, et al. Hyperelastic model with entanglement effect. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(4): 1028-1037 (in Chinese) doi: 10.6052/0459-1879-21-008
|
[29] |
Rivlin RS. Large elastic deformations of isotropic materials IV. Further developments of the general theory. Philosophical Transactions of the Royal Society A - Mathematical Physical and Engineering Sciences, 1948, 241(835): 379-397
|
[30] |
Treloar LRG. Stress-strain data for vulcanised rubber under various types of deformation. Transactions of the Faraday Society, 1944, 40: 59-70 doi: 10.1039/tf9444000059
|
[31] |
Jones DF, Treloar LRG. The properties of rubber in pure homogeneous strain. Journal of Physics D: Applied Physics, 1975, 8(11): 1285-1304 doi: 10.1088/0022-3727/8/11/007
|
[1] | Gong Chencheng, Chen Yan, Dai Lanhong. REVIEW ON MECHANICAL BEHAVIOR AND CONSTITUTIVE RELATION OF POLYUREA ELASTOMER[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(1): 1-23. DOI: 10.6052/0459-1879-22-455 |
[2] | Qu Tongming, Feng Yuntian, Wang Mengqi, Zhao Tingting, Di Shaocheng. CONSTITUTIVE RELATIONS OF GRANULAR MATERIALS BY INTEGRATING MICROMECHANICAL KNOWLEDGE WITH DEEP LEARNING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(9): 2404-2415. DOI: 10.6052/0459-1879-21-221 |
[3] | Peng Xiangfeng, Li Luxian. STATE OF THE ART OF CONSTITUTIVE RELATIONS OF HYPERELASTIC MATERIALS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(5): 1221-1234. DOI: 10.6052/0459-1879-20-189 |
[4] | The elasto-plastic damage constitutive relations of orthotropic materials[J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(1): 67-75. DOI: 10.6052/0459-1879-2009-1-2006-585 |
[5] | Jinyang Liu, Jiazhen Hong. Nonlinear formulation for flexible multibody system with large deformation[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 39(1): 111-119. DOI: 10.6052/0459-1879-2007-1-2006-113 |
[6] | THE CONSTITUTIVE RELATION OF SUPERPLASTICITY OF METAL WITH UNIFORM EQUIAXED FINE GRAIN[J]. Chinese Journal of Theoretical and Applied Mechanics, 1993, 25(5): 560-568. DOI: 10.6052/0459-1879-1993-5-1995-678 |
[7] | 基于变形动力学模型的黏弹性材料本构关系[J]. Chinese Journal of Theoretical and Applied Mechanics, 1993, 25(3): 375-379. DOI: 10.6052/0459-1879-1993-3-1995-655 |
[8] | A CONSTITUTIVE RELATION OF ELASTO-BRITTLE MATERIAL WITH DAMAGE AND ITS APPLICATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 1991, 23(3): 374-378. DOI: 10.6052/0459-1879-1991-3-1995-852 |
[9] | ON HYPERELASTIC CONDITION OF RATE-FORM ELASTICPLASTIC CONSTITUTIVE LAW AT FINITE DEFORMATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 1991, 23(2): 248-251. DOI: 10.6052/0459-1879-1991-2-1995-834 |
[10] | 一种描述形状记忆合金拟弹性变形行为的本构关系[J]. Chinese Journal of Theoretical and Applied Mechanics, 1991, 23(2): 201-210. DOI: 10.6052/0459-1879-1991-2-1995-827 |
1. |
李锋,彭天波. 包含Mullins效应的HDR热-超-黏弹性本构模型. 力学学报. 2024(12): 3498-3506 .
![]() |