EI、Scopus 收录
中文核心期刊
Peng Peng, Peng Feng, Sun Zhenyu, Zhang Dingli. Property prediction methods of granular soil penetration grouting reinforced body based on fractal theory and Mori-Tanaka method. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(11): 3099-3112. DOI: 10.6052/0459-1879-22-308
Citation: Peng Peng, Peng Feng, Sun Zhenyu, Zhang Dingli. Property prediction methods of granular soil penetration grouting reinforced body based on fractal theory and Mori-Tanaka method. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(11): 3099-3112. DOI: 10.6052/0459-1879-22-308

PROPERTY PREDICTION METHODS OF GRANULAR SOIL PENETRATION GROUTING REINFORCED BODY BASED ON FRACTAL THEORY AND MORI-TANAKA METHOD

  • Received Date: July 10, 2022
  • Accepted Date: September 30, 2022
  • Available Online: October 01, 2022
  • In the grouting reinforcement project, in order to avoid the instability of the support structure due to excessive force caused by spatial variability, a reasonable prediction method for the stiffness and strength of grouting reinforced body is necessary. The fractal theory is used to describe the pore characteristics of the granular soil type tunnel surrounding rock, and the conversion relationship between the body porosity and surface porosity of the surrounding rock is established based on the empirical formula of tortuosity. A new macroscopic stiffness prediction method for grouting reinforced body is proposed based on the Mori-Tanaka method with the body porosity as the variable. By using energy method to solve the bulking critical load of different half-wave distribution patterns of connecting pores as the uniaxial compressive strength of the grouting reinforced body, so that a new theoretical model for strength prediction of grouted reinforced body is established. The Yujingshan tunnel is used as the engineering background, the method proposed by this paper is secondly developed in FLAC3D, by randomly generating porosity for different surrounding rock elements, the mechanical properties calculated by proposed stiffness and strength prediction methods of grouting reinforced body is assigned to the surrounding rock elements, and the spatial variability of surrounding rock is realized. The maximum absolute error of the horizontal convergence of the tunnel between simulation and monitoring result is only 8 mm. The numerical simulation results show that the grouting reinforcement of the backfill region of Yujingshan tunnel can reduce the surrounding rock displacement by 50%-90%, greatly reduce the bending moment of support structure corresponding to surrounding rock region which has poorly physical and mechanical properties, reduce the support structure torque to 0, and control the support deformation within 10 mm. However, the load distribution law between the backfill region and limestone cannot be changed by grouting.
  • [1]
    王涛, 朱俊高, 刘斯宏. 不同细料含量土石混合料塑性行为离散元模拟. 力学学报, 2022, 54(4): 1075-1084 (Wang Tao, Zhu Jungao, Liu Sihong. DEM simulation on plasticity behavior of soil-rock mixture with different fine contents. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(4): 1075-1084 (in Chinese) doi: 10.6052/0459-1879-21-618
    [2]
    钟祖良, 别聪颖, 范一飞等. 土石混合体注浆扩散机制及影响因素试验研究. 岩土力学, 2019, 40(11): 4194-4202 (Zhong Zuliang, Bie Congying, Fan Yifei, et al. Experimental study on grouting diffusion mechanism and influencing factors of soil-rock mixture. Rock and Soil Mechanics, 2019, 40(11): 4194-4202 (in Chinese)
    [3]
    沙飞, 李术才, 刘人太等. 富水砂层高校注浆材料试验与应用. 岩石力学与工程学报, 2019, 38(2): 1420-1433 (Sha Fei, Li Shucai, Liu Rentai, et al. Performance and engineering application of effective microfine cement-based grout(EMCG) for water-rich sand strata. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(2): 1420-1433 (in Chinese)
    [4]
    高红科, 王琦, 李术才等. 注浆岩体强度随钻评价试验研究. 采矿与安全工程学报, 2021, 38(2): 326-333 (Gao Hongke, Wang Qi, Li Shucai, et al. Experimental study on the while-drilling evaluation of the strength of grouted rock mass. Journal of Mining & Safety Engineering, 2021, 38(2): 326-333 (in Chinese) doi: 10.13545/j.cnki.jmse.2020.0450
    [5]
    孙子正, 李术才, 刘人太等. 软流塑地层注浆加固作用定量化研究. 岩石力学与工程学报, 2016, 35(S1): 3385-3393 (Sun Zizheng, Li Shucai, Liu Rentai, et al. , Quantitative research on grouting reinforcement of soft fluid-plastic stratum. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(S1): 3385-3393 (in Chinese) doi: 10.13722/j.cnki.jrme.2015.1152
    [6]
    Zhang DL, Fang Q, Lou HC. Grouting techniques for the unfavorable geological conditions of Xiang’an subsea tunnel in China. Journal of Rock Mechanics and Geotechnical Engineering, 2014, 6: 438-446 doi: 10.1016/j.jrmge.2014.07.005
    [7]
    彭鹏, 张顶立, 孙振宇. 含软弱夹层隧道围岩变形特性与加固参数设计方法. 岩石力学与工程学报, 2021, 40(11): 2260-2272 (Peng Peng, Zhang Dingli, Sun Zhenyu. Deformation characteristics of surrounding rock and reinforcement parameter design of weak interlayer tunnels. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(11): 2260-2272 (in Chinese)
    [8]
    李术才, 郑卓, 刘人太等. 考虑浆-岩耦合效应的微裂隙注浆扩散机制分析. 岩石力学与工程学报, 2017(4): 812-820 (Li Shucai, Zheng Zhuo, Liu Rentai, et al. Analysis on fracture grouting mechanism considering grout-rock coupling effect. Chinese Journal of Rock Mechanics and Engineering, 2017(4): 812-820 (in Chinese)
    [9]
    邓成进, 党发宁, 苗喆等. 堆石料注浆技术及注浆后力学性质试验研究. 岩土工程学报, 2019, 41(10): 1907-1913 (Deng Chengjin, Dang Faning, Miao Zhe, et al. Experimental study on grouting technology of rockfill and mechanical properties after grouting. Chinese Journal of Geotechnical Engineering, 2019, 41(10): 1907-1913 (in Chinese)
    [10]
    沙飞, 李术才, 林春金等. 砂土介质注浆渗透扩散试验与加固机制研究. 岩土力学, 2019, 40(11): 4259-4269 (Sha Fei, Li Shucai, Lin Chunjin, et al. Research on penetration grouting diffusion experiment and reinforcement mechanism for sandy soil porous media. Rock and Soil Mechanics, 2019, 40(11): 4259-4269 (in Chinese)
    [11]
    许宏发, 耿汉生, 李朝甫等. 破碎岩体注浆加固体强度估计. 岩土工程学报, 2013, 35(11): 2018-2022 (Xu Hongfa, Geng Hansheng, Li Chaofu, et al. Estimating strength of grouting reinforced bodies in broken rock mass. Chinese Journal of Geotechnical Engineering, 2013, 35(11): 2018-2022 (in Chinese)
    [12]
    雷进生, 刘非, 王乾峰等. 非均质土层的注浆扩散特性与加固力学行为研究. 岩土工程学报, 2015, 37(12): 2245-2253 (Lei Jin-sheng, Liu Fei, Wang Qianfeng et al. Diffusion characteristics and reinforcement mechanics of grouting in non-homogeneous soil strata. Chinese Journal of Geotechnical Engineering, 2015, 37(12): 2245-2253 (in Chinese) doi: 10.11779/CJGE201512014
    [13]
    Chao XJ, Tian WL, Xu F, et al. A fractal model of effective mechanical properties of porous composites. Composites Science and Technology, 2021, 213: 108957 doi: 10.1016/j.compscitech.2021.108957
    [14]
    Naili C, Doghri I, Kanit T. et al Short fiber reinforced composites:Unbiased full-field evaluation of various homogenization methods in elasticity. Composites Science and Technology, 2020, 187: 107942
    [15]
    张顶立. 隧道及地下工程的基本问题及其研究进展. 力学学报, 2017, 49(1): 3-21

    Zhang Dingli, Essential issues and their research progress in tunnel and underground engineering. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(1): 3-21 (in Chinese)
    [16]
    文明, 张顶立, 房倩. 高速铁路隧道围岩参数空间变异性的力学响应分析. 岩石力学与工程学报, 2017, 36(7): 1697-1709 (Wen Ming, Zhang Dingli, Fang Qian. Stochastic analysis of surrounding rock behavior of high speed railway tunnel considering spatial variation of rock parameters. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(7): 1697-1709 (in Chinese) doi: 10.13722/j.cnki.jrme.2017.0002
    [17]
    张顶立, 孙振宇, 侯艳娟. 隧道支护结构体系及其协同作用. 力学学报, 2019, 51(2): 577-593 (Zhang Dingli, Sun Zhenyu, Hou Yanjuan. Tunnel support structure system and its synergistic effect. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 577-593 (in Chinese) doi: 10.6052/0459-1879-18-322
    [18]
    Adolfo ND, Posadas DG, Quiroz R, et al. Multifractal characterization of soil pore system. Soil Science Society of America Journal, 2003, 67(5): 1361-1369
    [19]
    Rieu M, Sposito G. Fragmentation Fractal, Soil porosity, and Soil water properties: I. Theory. Soil Science Society of America Journal, 1991, 55: 1231-1238 doi: 10.2136/sssaj1991.03615995005500050006x
    [20]
    Luo YF, Xia BW, Li HL, et al. Fractal permeability model for dual-porosity media embedded with natural tortuous fractures. Fuel, 2021, 295: 120610 doi: 10.1016/j.fuel.2021.120610
    [21]
    Li JH, Yu BM. Tortuosity of flow paths through a sierpinski carpet. Chinese Physics Letters, 2011, 28(3): 034701 doi: 10.1088/0256-307X/28/3/034701
    [22]
    Vallejo LE, Mawby R. Porosity influence on the shear strength of granular material-clay mixtures. Engineering Geology, 2000, 58: 125-136
    [23]
    薛东杰, 赵艾博, 刘奎昌等. 多孔介质渗透迂曲度理论推导与实验验证. 矿业科学学报, 2021, 6(5): 615-622 (Xue Dongjie, Zhao Aibo, Liu Kuichang, et al. On the theoretical calculation of tortuosity in porous media and its experimental validation. Journal of Mining Science and Technology, 2021, 6(5): 615-622 (in Chinese) doi: 10.19606/j.cnki.jmst.2021.05.011
    [24]
    Koponen A, Kandhai D, Timonen J. Tortuous flow in porous media. Physical Review E, 1996, 54(1): 406-410
    [25]
    沈观林, 胡更开, 刘彬. 复合材料力学, 第2版. 北京: 清华大学出版社, 2013

    Shen Guanlin, Hu Gengkai, Liu Bin. Mechanics of Composite Materials, 2nd edition. Beijing: Tsinghua University Press, 2013 (in Chinese)
    [26]
    Mori T, Tanaka K. Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metallurgica, 1973, 21(5): 571-574 doi: 10.1016/0001-6160(73)90064-3
    [27]
    胡敏, 徐国元, 胡盛斌. 基于Eshelby张量和Mori-Tanka等效方法的砂卵石土等效弹性模量研究, 岩土力学, 2013, 34(5): 1437-1448

    Hu Min, Xu Guoyuan, Hu Shengbin. Study of equivalent elastic modulus of sand gravel soil with Eshelby tensor and Mori-Tanaka equivalent method. Rock and Soil Mechanics, 2013, 34(5): 1437-1448 (in Chinese)
    [28]
    徐芝纶. 弹性力学(下册), 第5版. 北京: 高等教育出版社, 2016

    Xu Zhilun. Elasticity Mechanics (vol. 2), 5th edition. Beijing: Higher Education Press, 2016 (in Chinese)
    [29]
    叶堃. 新建成贵线玉京山隧道岩溶大厅综合治理研究. [博士论文]. 成都: 西南交通大学, 2018

    Ye Kun, Study on the comprehensive treatment of karst along the tunnel of Chengdu-Guizhou newly-built railway line. [PhD Thesis]. Chengdu: Southwest Jiaotong University, 2018 (in Chinese))
    [30]
    王莹. 玉京山隧道工程地下水环境影响预测及保护措施研究. [博士论文]. 成都: 西南交通大学, 2018

    Wang Ying, Study on the groundwater environment impact prediction and protection measures for Yujingshan tunnel project. [PhD Thesis]. Chengdu: Southwest Jiaotong University, 2015 (in Chinese)
    [31]
    雷进生, 武增琳, 姚奇等. 基于Weibull分布的非均质地层物性参数随机模型. 地下空间与工程学报, 2017, 13(4): 684-691 (Lei Jinsheng, Wu Zenglin, Yao Qi, et al. Rand model of heterogeneous formation physical parameters based on Weibull distribution. Chinese Journal of Underground Space and Engineering, 2017, 13(4): 684-691 (in Chinese)
  • Related Articles

    [1]Hu Yanan, Yu Huan, Wu Shengchuan, Ao Ni, Kan Qianhua, Wu Zhengkai, Kang Guozheng. MACHINE LEARNED MECHANICAL PROPERTIES PREDICTION OF ADDITIVELY MANUFACTURED METALLIC ALLOYS: PROGRESS AND CHALLENGES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(7): 1892-1915. DOI: 10.6052/0459-1879-23-542
    [2]Guo Xiaolong, Yao Yin, Chen Shaohua. A NEW METHOD FOR PREDICTING THE INTERFACIAL MECHANICAL PROPERTY IN PARTICLE-REINFORCED COMPOSITES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(5): 1334-1344. DOI: 10.6052/0459-1879-21-076
    [3]Xu Can, Zhu Ping, Liu Zhao, Tao Wei. RESEARCH ON MULTISCALE STOCHASTIC MECHANICAL PROPERTIES PREDICTION OF PLAIN WOVEN CARBON FIBER COMPOSITES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(3): 763-773. DOI: 10.6052/0459-1879-20-002
    [4]Guan Xuexue, Chen Jianqiao, Zheng Yaochen, Zhang Xiaosheng. A COMBINED PARTICLE FILTER METHOD FOR PREDICTING STRUCTURAL PERFORMANCE DEGRADATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(3): 677-687. DOI: 10.6052/0459-1879-18-014
    [5]Zhu Hehua, Chen Qingy. AN APPROACH FOR PREDICTING THE EFFECTIVE PROPERTIES OF MULTIPHASE COMPOSITE WITH HIGH ACCURACY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(1): 41-47. DOI: 10.6052/0459-1879-16-347
    [6]Hao Zihui, Yan Chao, Zhou Ling. PARAMETRIC STUDY OF A k-ω-γ MODEL IN PREDICTING HYPERSONIC BOUNDARY-LAYER FLOW TRANSITION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(2): 215-222. DOI: 10.6052/0459-1879-14-294
    [7]Zhang Wei, Yu Yongliang, Tong Binggang. PREDICTION OF MECHANICAL PROPERTIES OF FISH MUSCLE IN VIVO DURING STEADY SWIMMING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(4): 619-625. DOI: 10.6052/0459-1879-14-053
    [8]Weihong Zhang, Gaoming Dai, Fengwen Wang, Shiping Sun, Hicham Bassir. Topology optimization of material microstructures using strain energy-based prediction of effective elastic properties[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 39(1): 77-89. DOI: 10.6052/0459-1879-2007-1-2006-086
    [9]Z.Y. Gao, Tongxi Yu, D. Karagiozova. Finite element simulation on the mechanical properties of MHS materials[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 39(1): 65-75. DOI: 10.6052/0459-1879-2007-1-2006-198
    [10]Kejun Yang, Shuyou Cao, Xingnian Liu. Flow resistance in compound channels and its prediction methods[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 39(1): 23-31. DOI: 10.6052/0459-1879-2007-1-2006-017
  • Cited by

    Periodical cited type(7)

    1. 秦鹏飞,陈涛,周想云. 砂质隧道复合注浆加固技术与其应用研究. 中国农村水利水电. 2025(03): 136-141+147 .
    2. 秦鹏飞,张颖,王柳舒. 非均质砂土劈裂注浆加固机理分析. 力学与实践. 2024(03): 609-616 .
    3. 张伟杰,盛广侠,王兰心,王赟程,王立国,刘志勇,蒋金洋,张嘉文. 复杂服役环境下无砟轨道水泥基材料性能演变的研究综述. 材料导报. 2024(22): 143-160 .
    4. 冯易鑫 ,彭辉 ,罗威 . 聚类分析-神经网络-贝叶斯优化联合识别复合材料参数研究. 力学学报. 2024(11): 3333-3350 . 本站查看
    5. 秦鹏飞,王文菁. 基于渗滤效应的砂土注浆扩散机理分析. 中国水利水电科学研究院学报(中英文). 2024(06): 623-631 .
    6. 王鹏程,阎学松,孙星亮,刘志春,段远钊,宁志玮,何佳贵. 考虑黏度时空变化特性速凝化学浆液渗透注浆机制. 岩土力学. 2024(12): 3668-3680 .
    7. 秦鹏飞,朱翔,周想云. 基于分形理论的裂隙岩体渗透注浆机理研究. 煤炭学报. 2024(S2): 845-851 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (715) PDF downloads (112) Cited by(10)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return