Citation: | Xue Xiao, Zhang Junhua, Sun Ying, Quan Tiehan. Vibrational characteristics of honeycomb sandwich cantilever plate with curved-wall core. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(11): 3169-3180. DOI: 10.6052/0459-1879-22-305 |
[1] |
吴文旺, 肖登宝, 孟嘉旭等. 负泊松比结构力学设计、抗冲击性能及在车辆工程应用与展望. 力学学报, 2021, 53(3): 611-638 (Wu Wenwang, Xiao Dengbao, Meng Jiaxu, et al. Structural mechanics design, impact resistance and application of negative Poisson's ratio in vehicle engineering. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(3): 611-638 (in Chinese)
|
[2] |
侯秀慧, 吕游, 周世奇等. 新型负刚度吸能结构力学特性分析. 力学学报, 2021, 53(7): 1940-1950 (Hou Xiuhui, Lü You, Zhou Shiqi, et al. Analysis of mechanical properties of new negative stiffness energy absorbing structures. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(7): 1940-1950 (in Chinese) doi: 10.6052/0459-1879-21-083
|
[3] |
Desguers T, Robinson A. An analytical and numerical investigation into conductive-radiative energy transfers in evacuated honeycombs. Application to the optimisation and design of ultra-high temperature thermal insulation. International Journal of Heat and Mass Transfer, 2022, 188: 122578
|
[4] |
任树伟, 辛锋先, 卢天健. 蜂窝层芯夹层板结构振动与传声特性研究. 力学学报, 2013, 45(3): 349-358 (Ren Shuwei, Xin Fengxian, Lu Tianjian. Study on vibration and sound transmission characteristics of honeycomb core sandwich laminate structure. Chinese journal of theoretical and applied mechanics, 2013, 45(3): 349-358 (in Chinese) doi: 10.6052/0459-1879-12-280
|
[5] |
尹剑飞, 蔡力, 方鑫等. 力学超材料研究进展与减振降噪应用. 力学进展, 2022, 52(3): 1-78 (Yin Jianfei, Cai Li, Fang Xin, et al. Research progress and application of mechanical metamaterials in vibration and noise reduction. Advances in Mechanics, 2022, 52(3): 1-78 (in Chinese) doi: 10.6052/1000-0992-22-035
|
[6] |
Gbison LJ, Ashby MF. Cellular Solids: Structure and Properties. Cambridge: Cambridge University Press, 1997: 135-150
|
[7] |
富明慧, 徐欧腾, 陈誉. 蜂窝芯层等效参数研究综述. 材料导报, 2015, 29(5): 127-134 (Fu Minghui, Xu Oteng, Chen Yu. Review on equivalent parameters of honeycomb core layer. Materials review, 2015, 29(5): 127-134 (in Chinese)
|
[8] |
杨稳, 张胜兰, 李莹. 蜂窝夹层结构等效模型研究进展. 复合材料科学与工程, 2020, 10: 122-128 (Yang Wen, Zhang Shenglan, Li Ying. Research progress in equivalent models of honeycomb sandwich structures. Composites Science and Engineering, 2020, 10: 122-128 (in Chinese) doi: 10.3969/j.issn.1003-0999.2020.10.017
|
[9] |
乐京霞, 周智斌, 王思宇等. 箭型蜂窝夹层板力学性能及等效方法研究. 华中科技大学学报(自然科学版), 2021, 49(10): 121-126 (Le Jingxia, Zhou Zhibin, Wang Siyu, et al. Study on mechanical properties and equivalent method of arrow honeycomb sandwich laminate. Journal of Huazhong University of Science and Technology (Natural Science Edition)
|
[10] |
Liu JL, Liu JY, Mei J, et al. Investigation on manufacturing and mechanical behavior of all-composite sandwich structure with Y-shaped cores. Composites Science & Technology, 2018, 159: 87-102
|
[11] |
Ru ZA, Xin RA, Xiang Y, et al. Mechanical properties of concrete composites with auxetic single and layered honeycomb structures. Construction and Building Materials, 2022, 322: 126453 doi: 10.1016/j.conbuildmat.2022.126453
|
[12] |
Albert FG, Giovanni GG, Marco A, et al. Mechanical performance of additively manufactured lightweight cellular solids: influence of cell pattern and relative density on the printing time and compression behavior. Journal of the Mechanics and Physics of Solids, 2019, 122: 1-26 doi: 10.1016/j.jmps.2018.08.022
|
[13] |
Zwab C, Jdab C, Kai L, et al. Hybrid hierarchical square honeycomb with widely tailorable effective in-plane elastic modulus. Thin-Walled Structures, 2022, 171: 108816 doi: 10.1016/j.tws.2021.108816
|
[14] |
Lee N, Horstemeyer MF, Rhee H, et al. Hierarchical multiscale structure-property relationships of the red-bellied woodpecker (Melanerpes carolinus) beak. Journal of The Royal Society Interface, 2014, 11(96): 20140274 doi: 10.1098/rsif.2014.0274
|
[15] |
Yang XF, Sun YX, Yang JL, et al. Out-of-plane crashworthiness analysis of bio-inspired aluminum honeycomb patterned with horseshoe mesostructure. Thin-Walled Structures, 2018, 125: 1-11 doi: 10.1016/j.tws.2018.01.014
|
[16] |
Deng X, Liu W. In-plane impact dynamic analysis for a sinusoi-dal curved honeycomb structure with negative Poisson’s ratio. Journal of Vibration and Shock, 2017, 36: 103-109
|
[17] |
Qiu J, Lang JH, Slocum AH. A curved-beam bistable mechanism. Journal of Microelectromechanical Systems, 2004, 13(2): 137-146
|
[18] |
Restrepo D, Mankame ND, Zavattieri PD. Phase transforming cellular material (PXCM) mechanical response and hysteretic behavior comparison with other cellular materials. Extreme Mechanics Letters, 2015, 4: 52-60 doi: 10.1016/j.eml.2015.08.001
|
[19] |
Debeau DA, Seepersad CC, Haberman MR. Impact behavior of negative stiffness honeycomb materials. Journal of Materials Research, 2018, 33: 290-299 doi: 10.1557/jmr.2018.7
|
[20] |
Chen S, Tan XJ, Hu JQ, et al. A novel gradient negative stiffness honeycomb for recoverable energy absorption. Composites Part B: Engineering, 2021, 215: 108745
|
[21] |
Di K, Mao XB. Free flexural vibration of honeycomb sandwich laminate with negative Poisson’s ratio simple supported on opposite edges. Acta Mater Composltae Sinica, 2016, 33: 910-920
|
[22] |
Li C, Shen HS, Wang H. Nonlinear dynamic response of sandwich laminates with functionally graded auxetic 3D lattice core. Nonlinear Dynamics, 2020, 100: 3235-3252 doi: 10.1007/s11071-020-05686-4
|
[23] |
Wu X, Li YG, Cai W, et al. Dynamic responses and energy absorption of sandwich laminate with aluminium honeycomb core under ice wedge impact. International Journal of Impact Engineering, 2022, 162: 104137 doi: 10.1016/j.ijimpeng.2021.104137
|
[24] |
Ma MZ, Yao WX, Jiang W, et al. Fatigue of composite honeycomb sandwich laminates under random vibration load. Composite Structures, 2022, 286: 115296 doi: 10.1016/j.compstruct.2022.115296
|
[25] |
Zhang W, Ma L, Zhang YF, et al. Nonlinear and dual-parameter chaotic vibrations of lumped parameter model in blisk under combined aerodynamic force and varying rotating speed. Nonlinear Dynamics, 2022, 108: 1217-1246
|
[26] |
陈永清, 仇琨, 李响. 类蜂窝夹层结构振动特性分析及应用研究. 机械, 2022, 49(1): 9-15,36 (Chen Yongqing, Qiu Kun, Li Xiang. Analysis and application of vibration characteristics of honeycomb-like sandwich structures. Mechanical, 2022, 49(1): 9-15,36 (in Chinese)
|
[27] |
Arunkumar MP, Pitchaimani J, Gangadharan KV, et al. Numerical and experimental study on dynamic characteristics of honeycomb core sandwich laminate from equivalent 2D model. Sādhanā, 2020, 45(1): 206
|
[28] |
闫昭臣, 张君华, 刘彦琦. 不同泊松比蜂窝夹层板的振动实验分析. 应用力学学报, 2021, 38(6): 2256-2261 (Yan Zhaochen, Zhang Junhua, Liu Yanqi. Vibration experimental analysis of honeycomb sandwich laminate with different Poisson ratios. Chinese Journal of Applied Mechanics, 2021, 38(6): 2256-2261 (in Chinese)
|
[29] |
何贵勤, 曹登庆, 陈帅等. 挠性航天器太阳翼全局模态动力学建模与实验研究. 力学学报, 2021, 53(8): 2312-2322 (He Guiqin, Cao Dengqing, Chen Shuai, et al. Study on global mode dynamic modeling and experiment for a solar array of the flexible spacecraft. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(8): 2312-2322 (in Chinese)
|
[30] |
杨雨恒, 张周锁, 史文博等. 铝蜂窝夹层板动力学建模仿真与试验验证. 机械设计, 2021, 38(8): 9-16 (Yang Yuheng, Zhang Zhousuo, Shi Wenbo, et al. Dynamic modeling simulation and experimental verification of aluminum honeycomb sandwich Laminate. Journal of Machine Design, 2021, 38(8): 9-16 (in Chinese)
|
[31] |
Reddy JN. Mechanics of Laminated Composite Laminates and Shells: Theory and Analysis. New York: CRC Press, 2004: 110-120
|
[32] |
Dozio L, Carrera E. Ritz analysis of vibrating rectangular and skew multilayered laminates based on advanced variable-kinematic models. Composites Structures, 2012, 94(6): 2118-2128
|
[1] | RESERACH ON DYNAMICAL CHARACTERISTICS OF PARALLEL- INERTER-BASED VIBRATION ISOLATOR CONSIDERING FRICTION[J]. Chinese Journal of Theoretical and Applied Mechanics. |
[2] | Niu Jiangchuan, Zhang Wanjie, Shen Yongjun, Wang Jun. SUBHARMONIC RESONANCE OF QUASI-ZERO-STIFFNESS VIBRATION ISOLATION SYSTEM WITH DRY FRICTION DAMPER[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(4): 1092-1101. DOI: 10.6052/0459-1879-21-680 |
[3] | Zhao Long, Lu Zeqi, Ding Hu, Chen Liqun. LOW-FREQUENCY VIBRATION ISOLATION AND ENERGY HARVESTING SIMULTANEOUSLY IMPLEMENTED BY A METAMATERIAL WITH LOCAL RESONANCE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(11): 2972-2983. DOI: 10.6052/0459-1879-21-471 |
[4] | Zhang Yuling, Gu Yongxia, Zhao Jieliang, Yan Shaoze. RESEARCH ON VIBRATION CHARACTERISTICS OF THE MANIPULATOR END UNDER ACTIVE CONTROL OF ARM STIFFNESS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(4): 985-995. DOI: 10.6052/0459-1879-20-075 |
[5] | Muqing Niu, Bintang Yang, Yikun Yang, Guang Meng, Liqun Chen. RESEARCH ON THE MAGNETO-MECHANICAL EFFECT IN ACTIVE AND PASSIVE MAGNETOSTRICTIVE VIBRATION ISOLATOR[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 324-332. DOI: 10.6052/0459-1879-18-254 |
[6] | Lu Zeqi, Chen Liqun. SOME RECENT PROGRESSES IN NONLINEAR PASSIVE ISOLATIONS OF VIBRATIONS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(3): 550-564. DOI: 10.6052/0459-1879-17-064 |
[7] | Gao Xue, Chen Qian, Liu Xianbin. NONLINEAR DYNAMICS DESIGN FOR PIECEWISE SMOOTH VIBRATION ISOLATION SYSTEM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(1): 192-200. DOI: 10.6052/0459-1879-15-099 |
[8] | Gao Yuan, Huang Biao, Wu Qin, Wang Guoyu. EXPERIMENTAL INVESTIGATION OF THE VIBRATION CHARACTERISTICS OF HYDROFOIL IN CAVITATING FLOW[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(6): 1009-1016. DOI: 10.6052/0459-1879-15-173 |
[9] | Wu Dafang, Zhao Shougen, Pan Bing, Wang Yuewu, Wang Jie, Mu Meng, Zhu Lin. EXPERIMENTAL STUDY ON HIGH TEMPERATURE THERMAL-VIBRATION CHARACTERISTICS FOR HOLLOW WING STRUCTURE OF HIGH-SPEED FLIGHT VEHICLES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(4): 598-605. DOI: 10.6052/0459-1879-12-360 |
[10] | Dynamic properties of a class of vibration with isolator with solid-and-liquid mixture[J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(2): 253-258. DOI: 10.6052/0459-1879-2009-2-2008-059 |
1. |
卢传浩,周宇琦,曹勇,李杰,刘志芳,陈龙. 新型梯度连续可控夹层板抗冲击性能研究及优化. 力学学报. 2024(06): 1713-1726 .
![]() | |
2. |
冯学凯,王宝珍,巫绪涛,王选,郭煜. 新型节圆正弦蜂窝面内压缩力学性能研究. 力学学报. 2023(09): 1910-1920 .
![]() |