EI、Scopus 收录
中文核心期刊
Cao Caiqin, Chen Jingbo, Li Dongbo. Bending performance analysis of flexoelectric nanoplate considering electric field gradients. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(11): 3088-3098. DOI: 10.6052/0459-1879-22-282
Citation: Cao Caiqin, Chen Jingbo, Li Dongbo. Bending performance analysis of flexoelectric nanoplate considering electric field gradients. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(11): 3088-3098. DOI: 10.6052/0459-1879-22-282

BENDING PERFORMANCE ANALYSIS OF FLEXOELECTRIC NANOPLATE CONSIDERING ELECTRIC FIELD GRADIENTS

  • Received Date: June 20, 2022
  • Accepted Date: September 12, 2022
  • Available Online: September 13, 2022
  • The size-dependent flexoelectric effect plays an increasingly critical role in the design of smart devices. Researchers have done much work in multi-physics field analysis at the micro- or nano-scale. The electromechanical coupling behavior of nanoplate in the bending problem is analyzed based on the non-classical theory of elastic dielectric materials considering the flexoelectric effect and electric field gradient effect, using two-dimensional nanoplate as an example. The Mindlin assumption is used to obtain the first-order truncation of the displacement field and electric potential field of the Mindlin plate, the material of plate is assumed to be a cubic crystal in m3m class, the two-dimensional constitutive equations are obtained by substituting the three-dimensional constitutive equations into the expressions of higher-order stress, higher-order couple stress, higher-order electric displacement and higher-order quadrupole, the governing equations of the plate and the line integral equation on the boundary are simultaneously derived through the elastic dielectric variational principle, hence the higher-order bending equations, the higher-order electric potential equation, and the corresponding simply-supported boundary conditions of the rectangular plate are obtained by substituting the two-dimensional constitutive equations and the directional cosine on the boundary into the governing equations of the plate and the line integral equation on the boundary, respectively. According to the higher-order bending equations, higher-order electric potential equation, the corresponding simply-supported boundary conditions of rectangular plate, and the Navier solution theory, the electric potential field of nanoplate are analytically solved, with a focus on the influence of electric field gradient effect on the electric potential in the plate. The numerical results show that the electric field gradient weakens the first-order electric potential generated by the flexoelectric effect in the nanoplate, and the greater the material parameter g11, the greater the weakening of the first-order electric potential. In addition, the existence of the electric field gradient eliminates the singularities of the first-order electric potential of nanoplate under transverse concentrated loading. Present work can be seen as an extension of the structural analysis theory of nanoplate with flexoelectric effect and electric field gradient effect, which provides a reference for the structural design of micro- or nano-scale devices.
  • [1]
    Deng Q, Kammoun M, Erturk A, et al. Nanoscale flexoelectric energy harvesting. International Journal of Solids and Structures, 2014, 51: 3218-3225 doi: 10.1016/j.ijsolstr.2014.05.018
    [2]
    陈春林, 李肇奇, 梁旭等. 悬臂梁挠曲电俘能器的力电耦合模型及性能分析. 固体力学学报, 2020, 41(2): 159-169 (Chen Chunlin, Li Zhaoqi, Liang Xu, et al. Electromechanical coupling model and performance analysis of the unimorph cantilever beam-based flexoelectric energy harvester. Chinese Journal of Solid Mechanics, 2020, 41(2): 159-169 (in Chinese)
    [3]
    李鹏. 压电复合结构中弹性波传播特性分析及其在高性能声波器件中的应用研究. [博士论文]. 西安: 西安交通大学, 2017

    Li Peng. Investigation of elastic waves propagation properties in piezoelectric composite structures and applications for acoustic wave devices with high performance. [PhD Thesis]. Xi’an: Xi’an Jiaotong University, 2017 (in Chinese)
    [4]
    Pan E. Exact solution for simply supported and multilayered magneto-electro-elastic plates. Journal of Applied Mechanics, 2001, 68: 608-618 doi: 10.1115/1.1380385
    [5]
    Ho CM, Tai YC. Micro-electro-mechanical-systems (MEMS) and fluid flows. Annual Review of Fluid Mechanics, 1998, 30: 579-612 doi: 10.1146/annurev.fluid.30.1.579
    [6]
    张乐乐, 刘响林, 刘金喜. 压电纳米板中SH型导波的传播特性. 力学学报, 2019, 51(2): 503-511 (Zhang Lele, Liu Xianglin, Liu Jinxi. Propagation characteristics of SH guided waves in a piezoelectric nanoplate. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 503-511 (in Chinese)
    [7]
    孟莹, 丁虎, 陈立群. 带附加质量块的压电圆板能量采集器振动分析. 力学学报, 2021, 53(11): 2950-2960 (Meng Ying, Ding Hu, Chen Liqun. Vibration analysis of a piezoelectric circular plate energy harvester considering a proof mass. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(11): 2950-2960 (in Chinese)
    [8]
    李世荣. 功能梯度材料明德林矩形微板的热弹性阻尼. 力学学报, 2022, 54(6): 1601-1612 (Li Shirong. Thermoelastic damping in functionally graded Mindlin rectangular micro plates. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(6): 1601-1612 (in Chinese)
    [9]
    Yang J. An Introduction to the Theory of Piezoelectricity. New York: Springer, 2005
    [10]
    Wang B, Gu Y, Zhang S, et al. Flexoelectricity in solids: progress, challenges, and perspectives. Progress in Materials Science, 2019, 106: 100570 doi: 10.1016/j.pmatsci.2019.05.003
    [11]
    Bhaskar UK, Banerjee N, Abdollahi A, et al. A flexoelectric microelectromechanical system on silicon. Nature Nanotechnology, 2016, 11(3): 263-266 doi: 10.1038/nnano.2015.260
    [12]
    Deng Q, Lü S, Li Z, et al. The impact of flexoelectricity on materials, devices, and physics. Journal of Applied Physics, 2020, 128: 080902 doi: 10.1063/5.0015987
    [13]
    Qu YL, Jin F, Yang JS. Effects of mechanical fields on mobile charges in a composite beam of flexoelectric dielectrics and semiconductors. Journal of Applied Physics, 2020, 127: 194502 doi: 10.1063/5.0005124
    [14]
    Quang HL, He QC. The number and types of all possible rotational symmetries for flexoelectric tensors. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2011, 467(2132): 2369-2386 doi: 10.1098/rspa.2010.0521
    [15]
    Shen S, Hu S. A theory of flexoelectricity with surface effect for elastic dielectrics. Journal of the Mechanics and Physics of Solids, 2010, 58: 665-677 doi: 10.1016/j.jmps.2010.03.001
    [16]
    Shu L, Wei X, Pang T, et al. Symmetry of flexoelectric coefficients in crystalline medium. Journal of Applied Physics, 2011, 110(10): 104106 doi: 10.1063/1.3662196
    [17]
    Maranganti R, Sharma ND, Sharma P. Electromechanical coupling in nonpiezoelectric materials due to nanoscale nonlocal size effects: Green’s function solutions and embedded inclusions. Physical Review B, 2006, 74: 014110 doi: 10.1103/PhysRevB.74.014110
    [18]
    El Dhaba AR, Gabr ME. Flexoelectric effect induced in an anisotropic bar with cubic symmetry under torsion. Mathematics and Mechanics of Solids, 2020, 25(3): 820-837 doi: 10.1177/1081286519895569
    [19]
    Qu YL, Jin F, Yang JS. Magnetically induced charge redistribution in the bending of a composite beam with flexoelectric semiconductor and piezomagnetic dielectric layers. Journal of Applied Physics, 2021, 129: 064503 doi: 10.1063/5.0039686
    [20]
    Qu YL, Jin F, Yang JS. Flexoelectric effects in second-order extension of rods. Mechanics Research Communications, 2021, 111: 103625 doi: 10.1016/j.mechrescom.2020.103625
    [21]
    Qu Y, Jin F, Yang J. Torsion of a flexoelectric semiconductor rod with a rectangular cross section. Archive of Applied Mechanics, 2021, 91(5): 2027-2038 doi: 10.1007/s00419-020-01867-0
    [22]
    Li A, Zhou S, Qi L, et al. A flexoelectric theory with rotation gradient effects for elastic dielectrics. Modelling and Simulation in Materials Science and Engineering, 2016, 24: 015009 doi: 10.1088/0965-0393/24/1/015009
    [23]
    Qu YL, Zhang GY, Fan YM, et al. A non-classical theory of elastic dielectrics incorporating couple stress and quadrupole effects: part I–reconsideration of curvature-based flexoelectricity theory. Mathematics and Mechanics of Solids, 2021, 26(11): 1647-1659 doi: 10.1177/10812865211001533
    [24]
    Gao XL, Zhang GY. A non-classical Mindlin plate model incorporating microstructure, surface energy and foundation effects. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2016, 472: 20160275 doi: 10.1098/rspa.2016.0275
    [25]
    Li YS, Pan E. Static bending and free vibration of a functionally graded piezoelectric microplate based on the modified couple-stress theory. International Journal of Engineering Science, 2015, 97: 40-59 doi: 10.1016/j.ijengsci.2015.08.009
    [26]
    Yang J. The Mechanics of Piezoelectric Structures. Singapore: World Scientific, 2006
    [27]
    Mindlin RD. An Introduction to the Mathematical Theory of Vibrations of Elastic Plates. Singapore: World Scientific, 2006
    [28]
    Yang J. Mechanics of Piezoelectric Structures. Singapore: World Scientific, 2020
    [29]
    Koiter WT. Couple-stresses in the theory of elasticity. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen B, 1964, 67: 17-44
    [30]
    Mindlin RD. Influence of couple-stresses on stress concentrations. Experimental Mechanics, 1963, 3(1): 1-7 doi: 10.1007/BF02327219
    [31]
    Zhang GY, Gao XL, Guo ZY. A non-classical model for an orthotropic Kirchhoff plate embedded in a viscoelastic medium. Acta Mechanica, 2017, 228: 3811-3825 doi: 10.1007/s00707-017-1906-4
    [32]
    Mindlin RD. High frequency vibrations of piezoelectric crystal plates. International Journal of Solids and Structures, 1972, 8: 895-906 doi: 10.1016/0020-7683(72)90004-2
    [33]
    Mindlin RD. Polarization gradient in elastic dielectrics. International Journal of Solids and Structures, 1968, 4: 637-642 doi: 10.1016/0020-7683(68)90079-6
    [34]
    胡淑玲, 申胜平. 具有挠曲电效应的纳米电介质变分原理及控制方程. 中国科学: G辑, 2009, 39(12): 1762-1769 (Hu Shuling, Shen Shengping. Variational principles and governing equations in nano-dielectrics with the flexoelectric effect. Science China Physics,Mechanics &Astronomy, 2009, 39(12): 1762-1769 (in Chinese)
    [35]
    Gao XL, Mall S. Variational solution for a cracked mosaic model of woven fabric composites. International Journal of Solids and Structures, 2001, 38: 855-874 doi: 10.1016/S0020-7683(00)00047-0
    [36]
    Wang L, Liu S, Feng X, et al. Flexoelectronics of centrosymmetric semiconductors. Nature Nanotechnology, 2020, 15: 661-667 doi: 10.1038/s41565-020-0700-y
    [37]
    Yang XM, Hu YT, Yang J. Electric field gradient effects in anti-plane problems of polarized ceramics. International Journal of Solids and Structures, 2004, 41(24-25): 6801-6811 doi: 10.1016/j.ijsolstr.2004.05.018
  • Related Articles

    [1]Xue Miao, Ge Yawei, Zhang Zhengdi, Bi Qinsheng. BURSTING OSCILLATIONS AS WELL AS THE CLASSIFICATION IN THE FIELD WITH CODIMENSION-3 FOLD-FOLD-HOPF BIFURCATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(5): 1423-1438. DOI: 10.6052/0459-1879-21-024
    [2]Jiankang Zheng, Xiaofang Zhang, Qinsheng Bi. BURSTING OSCILLATIONS AS WELL AS THE DELAYED PITCHFORK BIFURCATION BEHAVIORS IN A CLASS OF CHAOTIC SYSTEM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 540-549. DOI: 10.6052/0459-1879-18-241
    [3]Qu Zifang, Zhang Zhengdi, Peng Miao, Bi Qinsheng. NON-SMOOTH BURSTING OSCILLATION MECHANISMS IN A FILIPPOV-TYPE SYSTEM WITH MULTIPLE PERIODIC EXCITATIONS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(5): 1145-1155. DOI: 10.6052/0459-1879-18-136
    [4]Chen Zhenyang, Han Xiujing, Bi Qinsheng. COMPLEX RELAXATION OSCILLATION TRIGGERED BY BOUNDARY CRISIS IN THE DISCRETE DUFFING MAP[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(6): 1380-1389. DOI: 10.6052/0459-1879-17-138
    [5]Hao Ying, Wu Zhiqiang. STOCHASTIC P-BIFURCATION OF TRI-STABLE VAN DER POL-DUFFING OSCILLATOR[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(2): 257-264. DOI: 10.6052/0459-1879-12-169
    [6]Zhang Xiaofang, Chen Xiaoke, Bi Qinsheng. RELAXATION BURSTING OF A FAST-SLOW COUPLED OSCILLATOR AS WELL AS THE MECHANISM OF NON-SMOOTH BIFURCATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, (3): 576-583. DOI: 10.6052/0459-1879-2012-3-20120314
    [7]zhang xiaofang bi qinsheng. Bursting phenomena as well as the bifurcation mechanism in periodically excited hartley model[J]. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(4): 765-773. DOI: 10.6052/0459-1879-2010-4-lxxb2009-614
    [8]Jun Zhou, Youhe Zhou. A new simple method of implicit time integration for dynamic problems of engineering structures[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 39(1): 91-99. DOI: 10.6052/0459-1879-2007-1-2006-167
    [9]Yourong Li, Lan Peng, Shuangying Wu, Nobuyuki Imaishi. Bifurcation of thermocapillary convection in a shallow annular pool of silicon melt[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 39(1): 43-48. DOI: 10.6052/0459-1879-2007-1-2005-470
    [10]Stochastic bifurcation in a duffing-van der pol system[J]. Chinese Journal of Theoretical and Applied Mechanics, 2006, 38(3): 429-432. DOI: 10.6052/0459-1879-2006-3-2005-256
  • Cited by

    Periodical cited type(5)

    1. 冷萌萌,钱有华. 周期激励下广义离散Duffing系统的多稳态分析. 动力学与控制学报. 2023(10): 18-25 .
    2. 李晓宁,张正娣. 非自治BVP系统的两尺度效应分析. 河南科技大学学报(自然科学版). 2019(01): 89-94+10 .
    3. 郑健康,张晓芳,毕勤胜. 一类混沌系统中的簇发振荡及其延迟叉形分岔行为. 力学学报. 2019(02): 540-549 . 本站查看
    4. 魏梦可,韩修静,张晓芳,毕勤胜. 正负双向脉冲式爆炸及其诱导的簇发振荡. 力学学报. 2019(03): 904-911 . 本站查看
    5. 陈振阳,韩修静,毕勤胜. 离散达芬映射中由边界激变所诱发的复杂的张弛振荡. 力学学报. 2017(06): 1380-1389 . 本站查看

    Other cited types(1)

Catalog

    Article Metrics

    Article views (919) PDF downloads (141) Cited by(6)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return