Citation: | Gao Yue, Wang Tao, Yan Ziming, Liu Zhanli, Zhuang Zhuo. Key mechanical problems of well drilling and completion and hydraulic fracture in highly efficient extraction of shale gas. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(8): 2248-2268. DOI: 10.6052/0459-1879-22-251 |
[1] |
庄茁, 柳占立, 王涛, 高岳, 王永辉, 付海峰. 页岩水力压裂的关键力学问题. 科学通报, 2016, 61(1): 72–81 doi: 10.1360/N972015-00347
Zhuang Zhuo, Liu Zhanli, Wang Tao, Gao Yue, Wang Yonghui, Fu Haifeng. The key mechanical problems on hydraulic fracture in shale. Chinese Science Bulletin, 2016, 61(1): 72–81(in Chinese) doi: 10.1360/N972015-00347
|
[2] |
王涛, 柳占立, 庄茁. 页岩气高效开采的可压裂度和射孔簇间距预测. 力学学报, 2022, 54(2): 1–9
Wang Tao, Liu Zhanli, Zhuang Zhuo. Fracturing degree and prediction of perforation cluster spacing for efficient exploitation of shale gas. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(2): 517-525(in Chinese)
|
[3] |
刘曰武, 高大鹏, 李奇等. 页岩气开采中的若干力学前沿问题. 力学进展, 2019, 49(0): 1–236 doi: 10.6052/1000-0992-17-020
Liu Yuewu, Gao Dapeng, Li Qi, et al. Mechanical frontiers in shale-gas development. Advances in Mechanics, 2019, 49(1): 201901(in Chinese) doi: 10.6052/1000-0992-17-020
|
[4] |
李世海, 段文杰, 周东, 樊智勇. 页岩气开发中的几个关键现代力学问题. 科学通报, 2016, 61(1): 47–61 doi: 10.1360/N972015-00745
Li Shihai, Duan Wenjie, Zhou Dong, Fan Zhiyong. Several key problems of modern mechanics in shale gas exploitation. Chinese Science Bulletin, 2016, 61(1): 47–61(in Chinese) doi: 10.1360/N972015-00745
|
[5] |
柳占立, 庄茁, 孟庆国, 詹世革, 黄克智. 页岩气高效开采的力学问题与挑战. 力学学报, 2017, 49(3): 507–516 doi: 10.6052/0459-1879-16-399
Liu Zhanli, Zhuang Zhuo, Meng Qingguo, Zhan Shige, Huang Keh-Chih. Problems and Challenges of Mechanics in Shale Gas Efficient Exploitation. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(3): 507-516 (in Chinese) doi: 10.6052/0459-1879-16-399
|
[6] |
衡帅, 杨春和, 张保平, 郭印同, 王磊, 魏元龙. 页岩各向异性特征的试验研究. 岩土力学, 2015, 36(3): 609–616 doi: 10.16285/j.rsm.2015.03.001
Heng Shuai, Yang Cunhe, Zhang Baoping, Guo Yintong, Wei Yuanlong. Experimental research on anisotropic properties of shale. Yantu Lixue/Rock and Soil Mechanics, 2015, 36: 609–616(in Chinese) doi: 10.16285/j.rsm.2015.03.001
|
[7] |
王红岩, 刘玉章, 董大忠, 赵群, 杜东. 中国南方海相页岩气高效开发的科学问题. 石油勘探与开发, 2013, 40(5): 574-579 doi: 10.11698/PED.2013.05.09
Wang Hongyan, Liu Yuzhang, Dong Dazhong, Zhao Qun, Du Dong. Scientific issues on effective development of marine shale gas in southern China. Petroleum Exploration and Development, 2013, 40(5): 574-579(in Chinese) doi: 10.11698/PED.2013.05.09
|
[8] |
Biot MA. General theory of three-dimensional consolidation. Journal of Applied Physics, 1941, 12(2): 155-164 doi: 10.1063/1.1712886
|
[9] |
Biot MA. Theory of elasticity and consolidation for a porous anisotropic solid. Journal of Applied Physics, 1955, 26(2): 182-185 doi: 10.1063/1.1721956
|
[10] |
Biot MA. General solutions of the equations of elasticity and consolidation for a porous material. Journal of Applied Mechanics, 1956, 23(1): 91-96 doi: 10.1115/1.4011213
|
[11] |
Biot MA, Willis DG. The elastic coefficients of the theory of consolidation. Journal of Applied Mechanics, 1957, 24: 594-601 doi: 10.1115/1.4011606
|
[12] |
Thompson M, Willis JR. A reformation of the equations of anisotropic poroelasticity. Journal of Applied Mechanics, 1991, 58(3): 612-616 doi: 10.1115/1.2897239
|
[13] |
Cheng AH-D. Material coefficients of anisotropic poroelasticity. International Journal of Rock Mechanics and Mining Sciences, 1997, 34(2): 199-205 doi: 10.1016/S0148-9062(96)00055-1
|
[14] |
Gao Y, Liu Z, Zhuang Z, et al. A reexamination of the equations of anisotropic poroelasticity. Journal of Applied Mechanics, 2017, 84(5): 051008 doi: 10.1115/1.4036194
|
[15] |
高岳, 柳占立, 庄茁, 等. 多孔充液弹性介质与井眼安全校核. 北京: 清华大学出版社, 2020
Gao Yue, Liu Zhanli, Zhuang Zhuo, et al. The Fluid-saturated Poroelastic Medium and Borehole Failure Problem. Beijing: Tsinghua University Press, 2020 (in Chinese)
|
[16] |
Rice JR, Cleary MP. Some basic stress diffusion solutions for fluid-saturated elastic porous media with compressible constituents. Reviews of Geophysics, 1976, 14(2): 227-241 doi: 10.1029/RG014i002p00227
|
[17] |
Cheng AH-D. Poroelasticity. Cham: Springer International Publishing, 2016: 27
|
[18] |
Detournay E, Cheng AH-D. Fundamentals of Poroelasticity//Analysis and Design Method. Oxford: Pergamon Pr, 1993: 113-171
|
[19] |
Gao Y, Liu Z, Zhuang Z, et al. Cylindrical borehole failure in a transversely isotropic poroelastic medium. Journal of Applied Mechanics, 2017, 84(11): 111008 doi: 10.1115/1.4037880
|
[20] |
Makhnenko RY, Tarokh A, Podladchikov YY. On the Unjacketed Moduli of Sedimentary Rock. Reston, VA: American Society of Civil Engineers, 2017: 897-904
|
[21] |
Makhnenko RY. Deformation of fluid-saturated porous rock. [PhD Thesis]. Ann Arbor: University of Minnesota, 2013
|
[22] |
Tarokh A. Poroelastic response of saturated rock. [PhD Thesis]. Ann Arbor: University of Minnesota, 2016
|
[23] |
Gao Y, Liu Z, Zhuang Z, et al. On the material constants measurement method of a fluid-saturated transversely isotropic poroelastic medium. Science China Physics, Mechanics & Astronomy, 2019, 62(1): 14611
|
[24] |
侯振坤, 杨春和, 郭印同等. 单轴压缩下龙马溪组页岩各向异性特征研究. 岩土力学, 2015, 36(9): 2541–2550
Hou Zhenkun, Yang Chunhe, Guo Yintong, et al. Experimental study on anisotropic properties of Longmaxi formation shale under uniaxial compression. Rock and Soil Mechanics, , 36(9): 2541–2550(in Chinese)
|
[25] |
陈天宇, 冯夏庭, 张希巍等. 黑色页岩力学特性及各向异性特性试验研究. 岩石力学与工程学报, 2014, 33(9): 1772–1779 doi: 10.13722/j.cnki.jrme.2014.09.006
Chen Tianyu, Feng Xiating, Zhang Xiwei, et al. Experimental study on mechanical and anisotropic properties of black shale. Yanshilixue Yu Gongcheng Xuebao/Chinese Journal of Rock Mechanics and Engineering, 2014, 33: 1772–1779(in Chinese) doi: 10.13722/j.cnki.jrme.2014.09.006
|
[26] |
何柏, 谢凌志, 李凤霞, 赵鹏, 张瑶. 龙马溪页岩各向异性变形破坏特征及其机理研究. 中国科学: 物理学, 力学, 天文学, 2017, 47(11): 103–114
He Bo, Xie Lingzhi, Li Fengxia, Zhao Peng, Zhang Yao. Anisotropic mechanism and characteristics of deformation and failure of Longmaxi shale. SCIENTIA SINICA Physica, Mechanica & Astronomica, 2017, 47(11): 103-114(in Chinese)
|
[27] |
衡帅, 杨春和, 郭印同, 王传洋, 王磊. 层理对页岩水力裂缝扩展的影响研究. 岩石力学与工程学报, 2015(2): 228–237 doi: 10.13722/j.cnki.jrme.2015.02.002
Heng Shuai, Yang Cunhe, Guo Yintong, Wang Chuanyang, Wang Lei. Influence of bedding planes on hydraulic fracture propagation in shale formation. Yanshilixue Yu Gongcheng Xuebao/Chinese Journal of Rock Mechanics and Engineering, 2015, 34: 228–237(in Chinese) doi: 10.13722/j.cnki.jrme.2015.02.002
|
[28] |
熊健, 张茜, 梁利喜, 刘向君. 四川盆地龙马溪组页岩断裂韧性特征与预测方法. 地下空间与工程学报, 2019, 2: 541-567
Xiong Jian, Zhang Oian, Liang Lixi, et al. Prediction method and characteristics of the fracture toughness of Longmaxi Formation shale in Sichuan Basin. Chinese Journal of Underground Space and Engineering, 2019, 15(2): 541–547(in Chinese)
|
[29] |
Cho JW, Kim H, Jeon S, et al. Deformation and strength anisotropy of Asan gneiss, Boryeong shale, and Yeoncheon schist. International Journal of Rock Mechanics and Mining Sciences, Elsevier, 2012, 50: 158-169 doi: 10.1016/j.ijrmms.2011.12.004
|
[30] |
Fjær E, Nes OM. The impact of heterogeneity on the anisotropic strength of an outcrop shale. Rock Mechanics and Rock Engineering, 2014, 47(5): 1603-1611 doi: 10.1007/s00603-014-0598-5
|
[31] |
Chandler MR, Meredith PG, Brantut N, et al. Fracture toughness anisotropy in shale. Journal of Geophysical Research: Solid Earth, 2016, 121(3): 1706-1729 doi: 10.1002/2015JB012756
|
[32] |
Nasseri MHB, Mohanty B. Fracture toughness anisotropy in granitic rocks. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(2): 167-193 doi: 10.1016/j.ijrmms.2007.04.005
|
[33] |
Kataoka M, Obara Y, Kuruppu M. Estimation of fracture toughness of anisotropic rocks by semi-circular bend (SCB) tests under water vapor pressure. Rock Mechanics and Rock Engineering, Springer Vienna, 2015, 48(4): 1353-1367 doi: 10.1007/s00603-014-0665-y
|
[34] |
Gao Y, Liu Z, Zeng Q, et al. Theoretical and numerical prediction of crack path in the material with anisotropic fracture toughness. Engineering Fracture Mechanics, 2017, 180: 330-347 doi: 10.1016/j.engfracmech.2017.06.013
|
[35] |
Gao Y, Liu Z, Wang T, et al. Crack forbidden area in the anisotropic fracture toughness medium. Extreme Mechanics Letters, 2018, 22: 172-175 doi: 10.1016/j.eml.2018.06.006
|
[36] |
Gao Y, Liu Z, Wang T, et al. XFEM modeling for curved fracture in the anisotropic fracture toughness medium. Computational Mechanics, 2019, 63(5): 869-883 doi: 10.1007/s00466-018-1627-0
|
[37] |
袁俊亮, 邓金根, 蔚宝华, 谭强, 范白涛. 页岩气藏水平井井壁稳定性研究. 天然气工业, 2012, 32(9): 66–70 doi: 10.3787/j.issn.1000-0976.2012.09.015
Yuan Junliang, Deng Jingen, Wei Baohua, Tan Qiang, Fan Baitao. Wellbore stability of horizontal wells in shale gas reservoirs. Natural Gas Industry, 2012, 32: 66–70(in Chinese) doi: 10.3787/j.issn.1000-0976.2012.09.015
|
[38] |
马天寿, 陈平. 页岩层理对水平井井壁稳定的影响. 西南石油大学学报(自然科学版), 2014, 26(5): 97–104
Tianshou Ma, Chen Ping. Influence of shale bedding plane on wellbore stability for horizontal wells. Xinan Shiyou Daxue Xuebao/Journal of Southwest Petroleum University, 2014, 36: 97–104(in Chinese)
|
[39] |
Fjaer E, Holt RM, Raaen AM, et al. Petroleum Related Rock Mechanics. 2nd Edition. Amsterdam: Elsevier, 2008
|
[40] |
Gao Y, Liu Z, Zhuang Z, et al. Cylindrical borehole failure in a poroelastic medium. Journal of Applied Mechanics, ASME, 2016, 83(6): 061005 doi: 10.1115/1.4032859
|
[41] |
Detournay E, Cheng AH-D. Poroelastic response of a borehole in a non-hydrostatic stress field. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1988, 25(3): 171-182
|
[42] |
Jaeger JC, Cook NGW, Zimmerman RW. Fundamentals of rock mechanics. Malden: Blackwell Publishing, 2007
|
[43] |
Dropek RK, Johnson JN, Walsh JB. The influence of pore pressure on the mechanical properties of Kayenta sandstone. Journal of Geophysical Research, 1978, 83(B6): 2817 doi: 10.1029/JB083iB06p02817
|
[44] |
Garg SK, Nur A. Effective stress laws for fluid-saturated porous rocks. Journal of Geophysical Research, 1973, 78(26): 5911-5921 doi: 10.1029/JB078i026p05911
|
[45] |
Handin J, Hager JRV, Friedman M, et al. Experimental Deformation of Sedimentary Rocks Under Confining Pressure: Pore Pressure Tests. AAPG Bulletin, 1963, 47: 717-755
|
[46] |
李军, 赵超杰, 柳贡慧等. 页岩气压裂条件下断层滑移及其影响因素. 中国石油大学学报(自然科学版), 2021, 45(2): 63–70
Li Jun, Zhao Chaojie, Liu Gonghui, et al. Assessment of fault slip in shale formation during hydraulic fracturing and its influence factors. Journal of China University of Petroleum (Edition of Natural Science), 2021, 45(2): 63-70(in Chinese))
|
[47] |
路千里, 刘壮, 郭建春, 何乐, 李彦超, 曾冀, 任山. 水力压裂致套管剪切变形机理及套变量计算模型. 石油勘探与开发, 2020, 48(2): 394–401 doi: 10.11698/PED.2021.02.16
Lu Qianli, Liu Zhuang, Guo Jianchun, He Le, Li Yanchao, Zeng Ji, Ren Shan. Hydraulic fracturing induced casing shear deformation and a prediction model of casing deformation. Petroleum Exploration and Development, 2021, 48(2): 394-401(in Chinese) doi: 10.11698/PED.2021.02.16
|
[48] |
童亨茂, 刘子平, 张宏祥, 张平, 邓才, 任晓海, 肖坤泽, 周一博. 暂堵大裂缝防治页岩气水平井套管变形的理论与方法. 天然气工业, 2021, 41(5): 92–100 doi: 10.3787/j.issn.1000-0976.2021.05.010
Hengmao Tong, Ziping Liu, Hongxiang Zhang, et al. Theory and method of temporary macrofracture plugging to prevent casing deformation in shale gas horizontal wells. Natural Gas Industry, 2021, 41(5): 92-100 (in Chinese)) doi: 10.3787/j.issn.1000-0976.2021.05.010
|
[49] |
Aoki T, Tan CP, Bamford WE. Effects of deformation and strength anisotropy on borehole failures in saturated shales. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1993, 30(7): 1031-1034
|
[50] |
梁天成, 付海峰, 刘云志, 修乃岭, 严玉忠. 水力压裂裂缝扩展声发射破裂机制判定方法研究. 实验力学, 2019, 34(2): 358–364 doi: 10.7520/1001-4888-17-127
Liang Tiancheng, Fu Haifeng, Liu Yunzhi, Xiu Nailing, Yan Yuzhong. On the determination method of rupture mechanism in acoustic emission used in hydraulic fracturing fracture propagation. Journal of Experimental Mechanics, 2019, 34(2): 358-364(in Chinese)) doi: 10.7520/1001-4888-17-127
|
[51] |
王涛, 高岳, 柳占立, 王永辉, 杨立峰, 庄茁. 基于扩展有限元法的水力压裂大物模实验的数值模拟. 清华大学学报(自然科学版), 2014, 54(10): 1304–1309
Wang T, Gao Y, Liu Z, Wang Y, Yang L, Zhuang Z. Numerical simulations of hydraulic fracturing in large objects using an extended finite element method. Qinghua Daxue Xuebao/Journal of Tsinghua University, School of Aerospace, Tsinghua University, Beijing, China: 2014, 54(10): 1304–1309(in Chinese)
|
[52] |
Wang T, Ye X, Liu Z, et al. An optimized perforation clusters spacing model based on the frictional shale layer’s debonding. Science China Physics, Mechanics & Astronomy, 2019, 62(11): 114621
|
[53] |
Wang T, Liu Z, Gao Y, et al. Theoretical and numerical models to predict fracking debonding zone and optimize perforation cluster spacing in layered shale. Journal of Applied Mechanics, 2018, 85(1): 011001 doi: 10.1115/1.4038216
|
[54] |
Zhou S, Zhuang X, Rabczuk T. A phase-field modeling approach of fracture propagation in poroelastic media. Engineering Geology, Elsevier, 2018, 240: 189-203
|
[55] |
Shi F, Wang X, Liu C, et al. An XFEM-based method with reduction technique for modeling hydraulic fracture propagation in formations containing frictional natural fractures. Engineering Fracture Mechanics, 2017, 173: 64-90 doi: 10.1016/j.engfracmech.2017.01.025
|
[56] |
王涛, 黄广炎, 柳占立, 等. 基于ABAQUS的有限元子程序开发及应用. 北京: 北京理工大学出版社, 2021
Wang Tao, Huang Guangyan, Liu Zhanli, et al. Development and Application of ABAQUS Based Finite Element Subroutine. Beijing: Beijing Institute of Technology Press, 2021 (in Chinese))
|
[57] |
盛茂, 李根生. 水力压裂过程的扩展有限元数值模拟方法. 工程力学, 2014, 31(10): 123–128 doi: 10.6052/j.issn.1000-4750.2013.04.0370
Sheng Mao, Li Gensheng. Extended finite element modeling of hydraulic fracture propagation. Engineering Mechanics, 2014, 31(10): 123–128(in Chinese) doi: 10.6052/j.issn.1000-4750.2013.04.0370
|
[58] |
刘文政, 姚军, 曾青冬. 深层油气藏水力压裂裂缝扩展数值模拟. 中国科学: 技术科学, 2019, 49(2): 223–233 doi: 10.1360/N092017-00207
Liu Wenzheng, Yao Jun, Zeng Qingdong. Numerical simulation of hydraulic fracture propagation in deep reservior. SCIENTIA SINICA Technologica, 2019, 49(2): 223–233(in Chinese) doi: 10.1360/N092017-00207
|
[59] |
Chen B, Barboza BR, Sun Y, et al. A review of hydraulic fracturing simulation. Archives of Computational Methods in Engineering, 2022, 29(4): 1-58 doi: 10.1007/s11831-021-09653-z
|
[60] |
Wang T, Ye X, Liu Z, et al. Modeling the dynamic and quasi-static compression-shear failure of brittle materials by explicit phase field method. Computational Mechanics, 2019, 64(6): 1537-1556 doi: 10.1007/s00466-019-01733-z
|
[61] |
Yang F, Zhao YP. The effect of a capillary bridge on the crack opening of a penny crack. Soft Matter, Royal Society of Chemistry, 2016, 12(5): 1586-1592 doi: 10.1039/C5SM02643A
|
[62] |
Shen W, Zhao YP. Quasi-static crack growth under symmetrical loads in hydraulic fracturing. Journal of Applied Mechanics, 2017, 84: 081009
|
[63] |
Shen W, Yang F, Zhao YP. Unstable crack growth in hydraulic fracturing: The combined effects of pressure and shear stress for a power-law fluid. Engineering Fracture Mechanics, 2020, 225: 106245 doi: 10.1016/j.engfracmech.2018.11.032
|
[64] |
Yue ZQ, Xiao HT, Tham LG, et al. Boundary element analysis of three-dimensional crack problems in two joined transversely isotropic solids. Computational Mechanics, 2005, 36(6): 459-474 doi: 10.1007/s00466-005-0681-6
|
[65] |
Wang T, Liu ZL, Cui YN, et al. A thermo-elastic-plastic phase-field model for simulating the evolution and transition of adiabatic shear band. Part I. Theory and model calibration. Engineering Fracture Mechanics, 2020, 232: 107028
|
[66] |
Wang T, Ye X, Liu Z, et al. A phase-field model of thermo-elastic coupled brittle fracture with explicit time integration. Computational Mechanics, 2020, 65(5): 1305-1321 doi: 10.1007/s00466-020-01820-6
|
[67] |
Wang T, Liu ZL, Cui YN, et al. A thermo-elastic-plastic phase-field model for simulating the evolution and transition of adiabatic shear band. Part II. Dynamic collapse of thick-walled cylinder. Engineering Fracture Mechanics, 2020, 231: 107027
|
[68] |
Moës N, Dolbow J, Belytschko T. A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering, 1999, 46(1): 131-150 doi: 10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
|
[69] |
Chen Z, Jeffrey RG, Zhang X, et al. Finite-element simulation of a hydraulic fracture interacting with a natural fracture. SPE Journal, 2017, 22(1): 219-234 doi: 10.2118/176970-PA
|
[70] |
Guo J, Zhao X, Zhu H, et al. Numerical simulation of interaction of hydraulic fracture and natural fracture based on the cohesive zone finite element method. Journal of Natural Gas Science and Engineering, 2015, 25: 180-188 doi: 10.1016/j.jngse.2015.05.008
|
[71] |
Wang T, Liu Z, Zeng Q, et al. XFEM modeling of hydraulic fracture in porous rocks with natural fractures. Science China Physics, Mechanics & Astronomy, 2017, 60(8): 084612
|
[72] |
Detournay E. Propagation regimes of fluid-driven fractures in impermeable rocks. International Journal of Geomechanics, 2004, 4(1): 35-45 doi: 10.1061/(ASCE)1532-3641(2004)4:1(35)
|
[73] |
Chen Z. Finite element modelling of viscosity-dominated hydraulic fractures. Journal of Petroleum Science and Engineering, 2012, 88-89: 136-144
|
[74] |
刘子平, 冯强, 王一萱, 王华, 邹龙庆, 汤继周. 考虑层理影响的威远页岩气储层压裂裂缝高度预测模型及施工优化方法. 测井技术, 2022, 46(1): 114–121 doi: 10.16489/j.issn.1004-1338.2022.01.019
Liu Ziping, Feng Qiang, Wang Yixuan, et al. Fracture Height Prediction Model Considering Bedding Layer Effect and Construction Optimization Approach for Weiyuan Shale Gas Reservoirs. Well Logging Technology, 2022, 46(01): 114-121(in Chinese)) doi: 10.16489/j.issn.1004-1338.2022.01.019
|
[75] |
Montavon G, Samek W, Müller KR. Methods for interpreting and understanding deep neural networks. Digital Signal Processing, 2018, 73: 1-15 doi: 10.1016/j.dsp.2017.10.011
|
[76] |
Miikkulainen R, Liang J, Meyerson E, et al. Evolving Deep Neural Networks//Artificial Intelligence in the Age of Neural Networks and Brain Computing. Elsevier, 2019: 293-312
|
[77] |
马文礼, 李治平, 孙玉平等. 基于机器学习的页岩气产能非确定性预测方法研究. 特种油气藏, 2019, 26(2): 101
Ma Weili, Li Zhiping, Sun Yuping, et al. Non-Deterministic Shale Gas Productivity Forecast Based on Machine Learning. Special Gas and Oil Reservoirs. 2019, 26(2): 101 (in Chinese))
|
[78] |
Zhang Y, Ling C. A strategy to apply machine learning to small datasets in materials science. NPJ Computational Materials, 2018, 4(1): 25 doi: 10.1038/s41524-018-0081-z
|
[79] |
Torlay L, Perrone-Bertolotti M, Thomas E, et al. Machine learning–XGBoost analysis of language networks to classify patients with epilepsy. Brain Informatics, 2017, 4(3): 159-169 doi: 10.1007/s40708-017-0065-7
|
[80] |
Chen T, Guestrin C. XGBoost: A scalable tree boosting system//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, ACM, 2016: 785-794
|
[81] |
严子铭, 王涛, 柳占立, 庄茁. 基于机器学习的页岩气采收率预测方法. 固体力学学报, 2021, 42(3): 221–232
Yan Ziming, Wang Tao, Liu Zhanli, Zhuang Zhuo. Machine-learning-based Prediction Methods on Shale Gas Recovery. Chinese Journal of Solid Mechanics, 2021, 42(3): 221-232(in Chinese))
|
[82] |
Okada S, Ohzeki M, Taguchi S. Efficient partition of integer optimization problems with one-hot encoding. Scientific Reports, 2019, 9(1): 13036 doi: 10.1038/s41598-019-49539-6
|
[83] |
Sun F, Du S, Zhao YP. Fluctuation of fracturing curves indicates in-situ brittleness and reservoir fracturing characteristics in unconventional energy exploitation. Energy, 2022, 252: 124043 doi: 10.1016/j.energy.2022.124043
|
[1] | Zhang Tao, Li Mingfeng, Wang Kun, Wu Chunyan, Song Bo, Yang Shuying. EXPERIMENTAL STUDY ON THE FLOW LAW OF SLICKWATER IN THE NEAR WELL AREA OF HYDRAULIC FRACTURE BASED ON PIV/POD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2025, 57(5): 1099-1116. DOI: 10.6052/0459-1879-24-256 |
[2] | Wang Li, Nan Yakun, Xu Shuo, Cao Yunxing, Tian Lin, Zhang Junsheng, Shi Bin. THE CONSTITUTIVE RELATIONSHIP BETWEEN STRESS DISTURBANCES AND HYDRAULIC FRACTURING VOLUME OPENINGS AND EFFECTS CONTROLLING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(7): 2150-2163. DOI: 10.6052/0459-1879-23-631 |
[3] | Zhi Mingyang, Yan Guojun, Sun Longquan, Wang Pengxiao. INVESTIGATION OF DYNAMIC CHARACTERISTICS ABOUT VEHICLE WITH AIRBAGS STRUCTURE DURING WATER-ENTRY AND RECOVERY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(4): 943-959. DOI: 10.6052/0459-1879-23-451 |
[4] | Jia Haowei, Yu Haiyang, Xie Feifan, Yuan Zhou, Xu Ke, Wang Yang. RESEARCH ON CO2 MICROBUBBLE DISSOLUTION KINETICS AND ENHANCED OIL RECOVERY MECHANISMS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(3): 755-764. DOI: 10.6052/0459-1879-22-507 |
[5] | Wang Tao, Liu Zhanli, Zhuang Zhuo. FRACTURING DEGREE AND PREDICTION OF PERFORATION CLUSTER SPACING FOR EFFICIENT EXPLOITATION OF SHALE GAS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(2): 517-525. DOI: 10.6052/0459-1879-21-197 |
[6] | Jia Ran, Zhao Guiping. POISSON’S RATIO AND TRIAXIAL COMPRESSION DEFORMATION PATTERN OF CLOSED-CELL ALUMINUM FOAM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(8): 2289-2297. DOI: 10.6052/0459-1879-21-173 |
[7] | Liu Zhanli, Zhuang Zhuo, Meng Qingguo, Zhan Shige, Huang Keh-Chih. PROBLEMS AND CHALLENGES OF MECHANICS IN SHALE GAS EFFICIENT EXPLOITATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(3): 507-516. DOI: 10.6052/0459-1879-16-399 |
[8] | Sun Keming, Zhang Shucui. HYDRAULIC FRACTURE PROPAGATION IN SHALE GAS BEDDING RESERVOIR ANALYTICAL ANALYSIS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(5): 1229-1237. DOI: 10.6052/0459-1879-16-085 |
[9] | Wang Lixiang, Tang Dehong, Li Shihai, Wang Jie, Feng Chun. NUMERICAL SIMULATION OF HYDRAULIC FRACTURING BY A MIXED METHOD IN TWO DIMENSIONS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(6): 973-983. DOI: 10.6052/0459-1879-15-097 |
[10] | Quanyou Zhang, Weiyi Chen, Xiaochun Wei, Chunjiang Li, Linlin Liu. The effects of age on viscoelasticity and deformation recovery of articular chondrocytes[J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(6): 906-912. DOI: 10.6052/0459-1879-2009-6-2008-401 |
1. |
冯源,邓立,路景海,邓愿涛,孙武鹏,温先划,朱洪谷,吴佳晔. 基于AI算法的隧道衬砌冷缝检测分类研究. 铁道建筑. 2025(01): 99-103 .
![]() | |
2. |
成晨,谢睿涵,宋沛泽,陈是扦. 基于深度核极限学习机的重载机车车钩摆角识别. 铁道车辆. 2025(01): 152-158+181 .
![]() | |
3. |
李彦阳,王金东,曲孝海. 基于GMPE和GWO-MKELM算法的往复压缩机轴承故障诊断. 科学技术与工程. 2024(23): 9842-9847 .
![]() | |
4. |
彭静,罗灿,马佳,黎科先,黄著. 基于遗传算法的身管-弹丸接触碰撞网络模型优化研究. 力学学报. 2024(10): 2974-2986 .
![]() | |
5. |
尹兆珂,缪炳荣,张盈,袁哲锋,胡天棋. 一种融合特征与卷积神经网络的车轮缺陷识别方法. 噪声与振动控制. 2024(06): 149-155 .
![]() | |
6. |
刘仁哲,王红兵,陈是扦,王开云. 变速工况下重载机车车轮多边形识别方法研究. 机械工程学报. 2024(24): 244-253 .
![]() | |
7. |
杨绍普,顾晓辉,刘永强,邓飞跃,刘泽潮,刘文朋,王宝森. 转向架关键运动部件动力学机理与故障诊断研究综述. 机械工程学报. 2023(20): 225-243 .
![]() |