EI、Scopus 收录
中文核心期刊
Volume 55 Issue 1
Jan.  2023
Turn off MathJax
Article Contents
Bai Jianxia, Zhao Kaifang, Cheng Xiaoqi, Jiang Nan. Experimental investigation on active control turbulent boundary layer dray reduction by synchronous and asynchronous vibration of dual vibrators. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(1): 52-61 doi: 10.6052/0459-1879-22-248
Citation: Bai Jianxia, Zhao Kaifang, Cheng Xiaoqi, Jiang Nan. Experimental investigation on active control turbulent boundary layer dray reduction by synchronous and asynchronous vibration of dual vibrators. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(1): 52-61 doi: 10.6052/0459-1879-22-248

EXPERIMENTAL INVESTIGATION ON ACTIVE CONTROL TURBULENT BOUNDARY LAYER DRAY REDUCTION BY SYNCHRONOUS AND ASYNCHRONOUS VIBRATION OF DUAL VIBRATORS

doi: 10.6052/0459-1879-22-248
  • Received Date: 2022-06-04
  • Accepted Date: 2022-07-30
  • Available Online: 2022-07-31
  • Publish Date: 2023-01-18
  • In order to achieve the drag reduction effect, the experimental scheme of zero-mass jet active control turbulent boundary layer is designed independently in the paper. Dual piezoelectric (PZT) oscillators as the active control actuators are symmetrically distributed embedded along the spanwise direction of the flat plate in turbulent boundary layer. The experimental investigation is carried out by synchronous (syn) and asynchronous (asyn) vibration active control mode to achieve drag reduction with the periodic vibration of dual PZT oscillators in a wind tunnel. It realizes the periodic interference and modulation to the multi-scale coherent structure in turbulent boundary layer. Furthermore, it reduces the skin friction and realizes drag reduction effect in all controlled cases.The consequence shows that the maximum drag reduction rate of 18.54% is obtained at 100 V, 160 Hz asynchronous vibration case.The multi-scale wavelet analysis of streamwise velocity shows that the energy of the small-scale coherent structure increases while the large-scale coherent structure decreases in all controlled conditions.Meanwhile, it adjusts the energy distribution of the large-scale and small-scale coherent structures in near-wall regions of turbulent boundary layer .The drag reduction effect of the asynchronous controlled case is better than the synchronous controlled case at the same voltage and frequency of vibration. When the vibration frequency of the PZT oscillators is 160 Hz, the PDF curves of the wavelet coefficient show the fluctuation characteristics and the tails of the PDF curve widen significantly. The pulsations of near-wall regions become more ordered and regular and the turbulence weakens intermittently after control in turbulent boundary layer.The results of the conditional phase averaging of small-scale coherent structure show that the periodic perturbations of the PZT oscillators enhance the turbulence intensity of the small-scale coherent structures. Furthermore, drag reduction effect is also achieved by breaking the large-scale coherent structure into the small-scale coherent structure. As the streamwise position is far away from the PZT oscillators, the modulation effect of the coherent structure in turbulent boundary layer gradually weakens.

     

  • loading
  • [1]
    Hutchins N, Marusic I. Evidence of very long meandering features in the logarithmic region of turbulent boundary layers. Journal of Fluid Mechanics, 2007, 579: 1-28 doi: 10.1017/S0022112006003946
    [2]
    Hutchins N, Chauhan K, Marusic I, et al. Towards reconciling the large-scale structure of turbulent boundary layers in the atmosphere and laboratory. Boundary Layer Meteorology, 2012, 145(2): 273-306 doi: 10.1007/s10546-012-9735-4
    [3]
    Elsinga GE, Adrian RJ, Oudheusden BWV, et al. Three-dimensional vortex organization in a high-Reynolds-number supersonic turbulent boundary layer. Journal of Fluid Mechanics, 2010, 644(4): 35-60
    [4]
    Dennis DJC, Nickels TB. Experimental measurement of large-scale three dimensional structures in a turbulent boundary layer. Part 1. Vortex packets. Journal of Fluid Mechanics, 2011, 673: 180-217
    [5]
    Zhou J, Adrian RJ, Balachandar S, et al. Mechanisms for generating coherent packets of hairpin vortices in channel flow. Journal of Fluid Mechanics, 1999, 387: 353-396 doi: 10.1017/S002211209900467X
    [6]
    Adrian RJ, Meinhart CD, Tomkins CD. Vortex organization in the outer region of the turbulent boundary layer. Journal of Fluid Mechanics, 2000, 422: 1-54 doi: 10.1017/S0022112000001580
    [7]
    Christensen KT, Adrian RJ. Statistical evidence of hairpin vortex packets in wall turbulence. Journal of Fluid Mechanics, 2001, 431: 433-443 doi: 10.1017/S0022112001003512
    [8]
    Adrian RJ, Ronald J. Hairpin vortex organization in wall turbulence. Physics of Fluids, 2007, 19(4): 457
    [9]
    Hutchins N, Marusic I. Large-scale influences in near-wall turbulence. Philosophical Transactions of the Royal Society A: Mathematical, Physical & Engineering Sciences, 2007, 365: 647-664
    [10]
    Mathis R, Hutchins N, Marusic I. Large-scale amplitude modulation of the small-scale structures in turbulent boundary layers. Journal of Fluid Mechanics, 2009, 628: 311-337 doi: 10.1017/S0022112009006946
    [11]
    Tang Z, Jiang N, Zheng X, et al. Bursting process of large and small-scale structures in turbulent boundary layer perturbed by a cylinder roughness element. Experiments in Fluids, 2016, 57(5): 1-14
    [12]
    Jeong J, Hussain F, Schoppa W, et al. Coherent structures near the wall in a turbulent channel flow. Journal of Fluid Mechanics, 1997, 332: 185-214 doi: 10.1017/S0022112096003965
    [13]
    Perlin M, Dowling DR, Ceccio SL. Freeman scholar review: Passive and active skin-friction drag reduction in turbulent boundary layers. Journal of Fluids Engineering, 2016, 138(9): 091104 doi: 10.1115/1.4033295
    [14]
    Hamilton JM, Kim J, Waleffe F. Regeneration mechanisms of near-wall turbulence structures. Journal of Fluid Mechanics, 1995, 287: 317-348
    [15]
    黄伟希, 许春晓, 崔桂香等. 壁面展向周期振动的槽道湍流减阻机理的研究. 力学学报, 2004, 1: 24-30 (Huang Weixi, Xu Chunxiao, Cui Guixiang, et al. Mechanism of drag reduction by spanwise wall oscillation in turbulent channel flow. Chinese Journal of Theoretical and Applied Mechanics, 2004, 1: 24-30 (in Chinese) doi: 10.1017/S0022112095000978
    [16]
    杨歌, 许春晓, 崔桂香. 槽道湍流减阻次优控制方案研究. 力学学报, 2010, 42(5): 818-829 (Yang Ge, Xu Chunxiao, Cui Guixiang. Study on suboptimal control schemes for skin-friction reduction in turbulent channel flow. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(5): 818-829 (in Chinese) doi: 10.6052/0459-1879-2010-5-lxxb2009-230
    [17]
    Deng BQ, Xu CX. Influence of active control on STG-based generation of streamwise vortices in near-wall turbulence. Journal of Fluid Mechanics, 2012, 710(5): 234-259
    [18]
    罗世东, 许春晓, 崔桂香. 圆管湍流减阻电磁力控制的直接数值模拟. 力学学报, 2007, 39(3): 311-319 (Luo Shidong, Xu Chunxiao, Cui Guixiang. Direct numerical simulation of turbulent pipe flow controlled by MHD for drag reduction. Chinese Journal of Theoretical and Applied Mechanics, 2007, 39(3): 311-319 (in Chinese) doi: 10.3321/j.issn:0459-1879.2007.03.003
    [19]
    葛铭纬, 许春晓, 黄伟希等. 基于壁面主动变形的湍流减阻控制研究. 力学学报, 2012, 44(4): 653-663 (Ge Mingwei, Xu Chunxiao, Huang Weixi, et al. Drag reduction control based on active wall deformation. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(4): 653-663 (in Chinese) doi: 10.6052/0459-1879-11-198
    [20]
    Gad-El-Hak M. Flow Control: Passive, Active, and Reactive Flow Management. Cambridge: Cambridge University Press, 2000
    [21]
    Kang S, Choi H. Active wall motions for skin-friction drag reduction. Journal of Fluid Mechanics, 2000, 12(12): 3301-3304
    [22]
    Kral LD. Active flow control technology//ASME Fluids Engineering Division Newslette, 1999: 1-3
    [23]
    彭磊, 罗振兵, 邓雄等. 水下合成双射流流场特性与推力特性实验研究, 空气动力学学报, 2017, 35(2): 290-298

    Peng Lei, Luo Zhenbing, Deng Xiong, et al. Experimental investigation on characteristics of flow field and propulsion of dual synthetic jets in water. Acta Mechanica Sinica, 2017, 35(2): 290-298 (in Chinese))
    [24]
    Guo H, Huang Q, Liu P, et al. Effects of local high-frequency perturbation on a turbulent boundary layer by synthetic jet injection. Fluid Dynamics Research, 2015, 47(4): 045501 doi: 10.1088/0169-5983/47/4/045501
    [25]
    罗振兵, 夏智勋. 合成射流技术及其在流动控制中应用的进展. 力学进展, 2005, 35(2): 221-234 (Luo Zhenbing, Xia Zhixun. Advances in synthetic jet technology and applications in flow control. Advances in Mechanics, 2005, 35(2): 221-234 (in Chinese) doi: 10.3321/j.issn:1000-0992.2005.02.009
    [26]
    Park YS, Park SH, Sung HJ. Measurement of local forcing on a turbulent boundary layer using PIV. Experiments in Fluids, 2003, 34(6): 697-707 doi: 10.1007/s00348-003-0604-2
    [27]
    Ye Z, Jiang Y, Zhang Y, et al. Effects of synthetic jet array on turbulent boundary layer. International Journal of Heat and Technology, 2019, 37(3): 893-898 doi: 10.18280/ijht.370327
    [28]
    Lu L, Li D, Gao Z, et al. Characteristics of array of distributed synthetic jets and effect on turbulent boundary layer. Acta Mechanica Sinica, 2020, 36(6): 1-20
    [29]
    Wang JJ, Feng LH, Xu CJ. Experimental investigations on separation control and flow structure around a circular cylinder with synthetic jet. Science China Technological Sciences, 2007, 50(5): 1-10
    [30]
    Zhang PF, Wang JJ. Novel signal wave pattern for efficient synthetic jet generation. Aiaa Journal, 2007, 45(5): 1058-1065 doi: 10.2514/1.25445
    [31]
    Cattafesta L, Sheplak M. Actuators for active flow control. Annual Review of Fluid Mechanics, 2011, 43: 247-272 doi: 10.1146/annurev-fluid-122109-160634
    [32]
    Jung WJ, Mangiavacchi N, Akhavan R, et al. Suppression of turbulence in wallbounded flows by high-frequency spanwise oscillations. Physics of Fluids, 1992, 4(8): 1605-1607 doi: 10.1063/1.858381
    [33]
    Skote M. Comparison between spatial and temporal wall oscillations in turbulent boundary layer flows. Journal of Fluid Mechanics, 2013, 730: 273-294 doi: 10.1017/jfm.2013.344
    [34]
    Choi KS. Near-wall structure of turbulent boundary layer with spanwise-wall oscillation. Physics of Fluids, 2002, 14(7): 2530-2542 doi: 10.1063/1.1477922
    [35]
    Jacobson SA, Reynolds WC. Active control of streamwise vortices and streaks in boundary layers. Journal of Fluid Mechanics, 1998, 360: 179-211 doi: 10.1017/S0022112097008562
    [36]
    Bai HL, Zhou Y. Active Control of Turbulent Boundary Layer Using An Array of Piezo-ceramic Actuators. Berlin Heidelberg: Springer, 2009
    [37]
    Bai HL, Zhou Y, Zhang WG, et al. Active control of a turbulent boundary layer based on local surface perturbation. Journal of Fluid Mechanics, 2014, 750: 316-354 doi: 10.1017/jfm.2014.261
    [38]
    Qiao ZX, Zhou Y, Wu Z. Turbulent boundary layer under the control of different schemes. Philosophical Transactions of the Royal Society A, 2017, 473: 20170038
    [39]
    Zheng XB, Jiang N, Zhang H. Predetermined control of turbulent boundary layer with a piezoelectric oscillator. Chinese Physics B, 2016, 25(1): 673-677
    [40]
    Bai JX, Jiang N, Zheng XB, et al. Active control of wall-bounded turbulence for drag reduction with piezoelectric oscillators. Chinese Physics B, 2018, 27(7): 074701 doi: 10.1088/1674-1056/27/7/074701
    [41]
    Cui XT, Jiang N, Zheng XB, et al. Active control of multiscale features in wall-bounded turbulence. Acta Mechanica Sinica, 2020, 36(1): 12-21
    [42]
    王帅杰, 崔晓通, 白建侠等. 减阻工况下壁面周期扰动对湍流边界层多尺度的影响. 力学学报, 2019, 51(3): 767-774 (Wang Shuaijie, Cui Xiaotong, Bai Jianxia, et al. The effect of periodic perturbation on multi scales in a turbulent boundary layer flow under drag reduction. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(3): 767-774 (in Chinese) doi: 1
    [43]
    Liu JH, Jiang N, Wang ZD, et al. Multi-scale coherent structures in turbulent boundary layer detected by locally averaged velocity structure functions. Applied Mathematics and Mechanics, 2005, 26(4): 456-464
    [44]
    姜楠, 柴雅彬. 用子波系数概率密度函数研究湍流多尺度结构的间歇性. 航空动力学报, 2005, 5: 718-724 (Jiang Nan, Chai Yabin. Experimental investigation of multi-scale eddy structures intermittency in turbulent flow using probability density function of wavelet coefficients. Journal of Aerospace Power, 2005, 5: 718-724 (in Chinese)
    [45]
    Tang Z, Jiang N. The effect of a synthetic input on small-scale intermittent bursting events in near-wall turbulence. Physics of Fluids, 2020, 32(1): 015110 doi: 10.1063/1.5129042
    [46]
    Ganapathisubramani B, Hutchins N, Monty JP, et al. Amplitude and frequency modulation in wall turbulence. Journal of Fluid Mechanics, 2012, 712: 61-91 doi: 10.1017/jfm.2012.398
    [47]
    Tang Z, Jiang N. Scale interaction and arrangement in a turbulent boundary layer perturbed by a wall mounted cylindrical element. Physics of Fluids, 2018, 30: 055103 doi: 10.1063/1.5022670
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(3)

    Article Metrics

    Article views (234) PDF downloads(76) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return