Citation: | Zhong Wei, Jia Leiming, Wang Shufei, Tian Zhou. A high-efficiency and high-resolution mapped WENO scheme and its applications in the numerical simulation of problems with complex flows. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(11): 3010-3031. DOI: 10.6052/0459-1879-22-247 |
[1] |
Jiang GS, Shu CW. Efficient implementation of weighted ENO schemes. Journal of Computational Physics, 1996, 126: 202-228 doi: 10.1006/jcph.1996.0130
|
[2] |
Huang ZY, Lin G, Ardekani AM. A mixed upwind/central WENO scheme for incompressible two-phase flows. Journal of Computational Physics, 2019, 387: 455-480 doi: 10.1016/j.jcp.2019.02.043
|
[3] |
Liu HP, Gao ZX, Jiang CW, et al. Numerical study of combustion effects on the development of supersonic turbulent mixing layer flows with WENO schemes. Computers and Fluids, 2019, 189: 82-93 doi: 10.1016/j.compfluid.2019.05.019
|
[4] |
Kumar S, Singh P. High order WENO finite volume approximation for population density neuron model. Applied Mathematics and Computation, 2019, 356: 173-189 doi: 10.1016/j.amc.2019.03.020
|
[5] |
Lefevre V, Garnica A, Lopez-Pamies O. A WENO finite-difference scheme for a new class of Hamilton-Jacobi equations in nonlinear solid mechanics. Computer Methods in Applied Mechanics and Engineering, 2019, 349: 173-189
|
[6] |
Wang D, Byambaakhuu T. High-order lax-friedrichs WENO fast sweeping methods for the S N neutron transport equation. Nuclear Science and Engineering, 2019, 193(9): 982-990 doi: 10.1080/00295639.2019.1582316
|
[7] |
Fu L, Tang Q. High-order low-dissipation targeted ENO schemes for ideal magnetohydrodynamics. Journal of Scientific Computing, 2019, 80: 692-716 doi: 10.1007/s10915-019-00941-2
|
[8] |
Nonomura T, Fujii K. Characteristic finite-difference WENO scheme for multicomponent compressible fluid analysis: Overestimated quasi-conservative formulation maintaining equilibriums of velocity, pressure, and temperature. Journal of Computational Physics, 2017, 340: 358-388 doi: 10.1016/j.jcp.2017.02.054
|
[9] |
童福林, 李新亮, 唐志共. 激波与转捩边界层干扰非定常特性数值分析. 力学学报, 2017, 49(1): 93-104 (Tong Fulin, Li Xinliang, Tang Zhigong. Numerical analysis of unsteady motion in shock wave/transitional boundary layer interaction. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(1): 93-104 (in Chinese) doi: 10.6052/0459-1879-16-224
|
[10] |
童福林, 李欣, 于长平等. 高超声速激波湍流边界层干扰直接数值模拟研究. 力学学报, 2018, 50(2): 197-208 (Tong Fulin, Li Xin, Yu Changping, et al. Direct numerical simulation of hypersonic shock wave and turbulent boundary layer interactions. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(2): 197-208 (in Chinese) doi: 10.6052/0459-1879-17-239
|
[11] |
Duan JM, Tang HZ. High-order accurate entropy stable finite difference schemes for the shallow water magnetohydrodynamics. Journal of Computational Physics, 2021, 431: 110136 doi: 10.1016/j.jcp.2021.110136
|
[12] |
Duan JM, Tang HZ. An efficient ADER discontinuous Galerkin scheme for directly solving Hamilton-Jacobi equation. Journal of Computational Mathematics, 2020, 38(1): 58-83 doi: 10.4208/jcm.1902-m2018-0189
|
[13] |
Balsara DS, Meyer C, Dumbser M, et al. Efficient implementation of ADER schemes for Euler and magnetohydrodynamical flows on structured meshes-Speed comparisons with Runge-Kutta methods. Journal of Computational Physics, 2013, 235: 934-969 doi: 10.1016/j.jcp.2012.04.051
|
[14] |
Balsara DS, Dumbser M, Abgrall R. Multidimensional HLLC Riemann solver for unstructured meshes-with application to Euler and MHD flows. Journal of Computational Physics, 2014, 261: 172-208 doi: 10.1016/j.jcp.2013.12.029
|
[15] |
贾雷明, 田宙. 竖直平面激波与水平热层作用后流场的理论计算方法研究. 爆炸与冲击, 2019, 39(12): 122202 (Jia Leiming, Tian Zhou. On the theoretical calculation method for interaction between the vertical plane shock wave and the horizontal thermal layer. Explosion and Shock Waves, 2019, 39(12): 122202 (in Chinese) doi: 10.11883/bzycj-2018-0510
|
[16] |
骆信, 吴颂平. 改进的五阶WENO-Z + 格式. 力学学报, 2019, 51(6): 1927-1939 (Luo Xin, Wu Songping. An improved fifth-order WENO-Z + scheme. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6): 1927-1939 (in Chinese) doi: 10.6052/0459-1879-19-249
|
[17] |
张树海. 加权紧致格式与 WENO 格式的比较研究. 力学学报, 2016, 48(2): 336-347 (Zhang Shuhai. The comparison of weighted compact schemes and WENO scheme. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(2): 336-347 (in Chinese)
|
[18] |
韦志龙, 蒋勤. 基于 WENO-THINC/WLIC 模型的水气二相流数值模拟. 力学学报, 2021, 53(4): 973-985 (Wei Zhilong, Jiang Qin. Numerical study on water-air two-phase flow based on WENO-THINC/WLIC model. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(4): 973-985 (in Chinese) doi: 10.6052/0459-1879-20-430
|
[19] |
刘瑜, 刘君, 唐玲艳等. 一种求解化学非平衡流动的新型解耦算法. 力学学报, 2015, 47(1): 82-94 (Liu Yu, Liu Jun, Tang Lingyan, et al. A novel uncoupled algorithm for solving chemical nonequilibrium flows. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(1): 82-94 (in Chinese) doi: 10.6052/0459-1879-14-089
|
[20] |
崔竹轩, 丁举春, 司廷. 反射激波作用下三维凹气柱界面演化的数值研究. 力学学报, 2021, 53(5): 1246-1256 (Cui Zhuxuan, Ding Juchun, Si Ting. Numerical study on the evolution of three-dimensional concave cylindrical interface accelerated by reflected shock. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(5): 1246-1256 (in Chinese)
|
[21] |
Zhao WG, Zheng HW, Liu FJ, et al. An efficient unstructured WENO method for supersonic reactive flows. Acta Mechanica Sinica, 2018, 34(4): 623-631 doi: 10.1007/s10409-018-0756-1
|
[22] |
Huang WF, Ren YX, Jiang X. A simple algorithm to improve the performance of the WENO scheme on non-uniform grids. Acta Mechanica Sinica, 2018, 34(1): 37-47 doi: 10.1007/s10409-017-0715-2
|
[23] |
余俊, 刘国振, 江俊等. 水下爆炸气泡射流载荷计算的新方法研究. 计算力学学报, 2021, 38(1): 120-125 (Yu Jun, Liu Guozhen, Jiang Jun, et al. Research on a new method of bubble jet load in underwater explosion. Chinese Journal of Computational Mechanics, 2021, 38(1): 120-125 (in Chinese) doi: 10.7511/jslx20200524001
|
[24] |
徐丽, 姜明洋, 蔡静静等. 无黏可压缩流动的改进高精度方法. 计算力学学报, 2019, 36(6): 784-791 (Xu Li, Jiang Mingyang, Cai Jingjing, et al. On improved high accuracy scheme for compressible inviscid flow computation. Chinese Journal of Computational Mechanics, 2019, 36(6): 784-791 (in Chinese) doi: 10.7511/jslx20181113003
|
[25] |
徐维铮, 孔祥韶, 郑成等. 三阶WENO格式精度分析与改进. 计算力学学报, 2018, 35(2): 51-55 (Xu Weizheng, Kong Xiangzhao, Zheng Cheng, et al. Precision analysis and improvement of third-order WENO scheme. Chinese Journal of Computational Mechanics, 2018, 35(2): 51-55 (in Chinese)
|
[26] |
Liu XD, Osher S, Chan T. Weighted essentially non-oscillatory schemes. Journal of Computational Physics, 1994, 115: 200-212 doi: 10.1006/jcph.1994.1187
|
[27] |
Henrick AK, Aslam TD, Powers JM. Mapped weighted essentially non-oscillatory schemes: Achieving optimal order near critical points. Journal of Computational Physics, 2005, 207: 542-567
|
[28] |
Feng H, Hu FX, Wang R. A new mapped weighted essentially non-oscillatory scheme. Journal of Scientific Computing, 2012, 51: 449-473 doi: 10.1007/s10915-011-9518-y
|
[29] |
Feng H, Huang C, Wang R. An improved mapped weighted essentially non-oscillatory scheme. Applied Mathematics and Computation, 2014, 232: 453-468 doi: 10.1016/j.amc.2014.01.061
|
[30] |
Li Q, Liu PX, Zhang HX. Piecewise polynomial mapping method and corresponding WENO scheme with improved resolution. Communications in Computational Physics, 2015, 18(5): 1417-1444 doi: 10.4208/cicp.150215.250515a
|
[31] |
Li R, Zhong W. A modified adaptive improved mapped WENO method. Communications in Computational Physics, 2021, 30(5): 1545-1588 doi: 10.4208/cicp.OA-2021-0057
|
[32] |
Wang R, Feng H, Huang C. A new mapped weighted essentially non-oscillatory method using rational function. Journal of Scientific Computing, 2016, 67: 540-580 doi: 10.1007/s10915-015-0095-3
|
[33] |
Borges R, Carmona M, Costa B, et al. An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws. Journal of Computational Physics, 2008, 227(6): 3191-3211 doi: 10.1016/j.jcp.2007.11.038
|
[34] |
Zhang R, Zhang MP, Shu CW. On the order of accuracy and numerical performance of two classes of finite volume WENO schemes. Communications in Computational Physics, 2011, 9(3): 807-827 doi: 10.4208/cicp.291109.080410s
|
[35] |
Gottlieb S, Shu CW. Total variation diminishing Runge-Kutta schemes. Mathematics of Computation, 1998, 67: 73-85 doi: 10.1090/S0025-5718-98-00913-2
|
[36] |
Gottlieb S, Shu CW, Tadmor E. Strong stability-preserving high-order time discretization methods. SIAM Review, 2001, 43: 89-112 doi: 10.1137/S003614450036757X
|
[37] |
Shu CW, Osher S. Efficient implementation of essentially non-oscillatory shock capturing schemes. Journal of Computational Physics, 1988, 77: 439-471 doi: 10.1016/0021-9991(88)90177-5
|
[38] |
Pirozzoli S. On the spectral properties of shock-capturing schemes. Journal of Computational Physics, 2006, 219(2): 489-497 doi: 10.1016/j.jcp.2006.07.009
|
[39] |
涂国华, 邓小刚, 毛枚良. 5阶非线性WCNS和WENO差分格式频谱特性比较. 空气动力学学报, 2012, 30(6): 709-712 (Tu Guo-hua, Deng Xiaogang, Mao Meiliang. Spectral property comparison of fifth-order nonlinear WCNS and WENO difference schemes. Acta Aerodynamica Sinica, 2012, 30(6): 709-712 (in Chinese)
|
[40] |
张瑞. 有限体积 WENO 格式及其应用. [博士论文]. 合肥: 中国科学技术大学, 2010: 29-50
Zhang Rui. Finite volume WENO schemes and applications. [PhD Thesis]. Hefei: University of Science and Technology of China, 2010: 29-50 (in Chinese)
|
[41] |
Sod GA. A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws. Journal of Computational Physics, 1978, 27: 1-31 doi: 10.1016/0021-9991(78)90023-2
|
[42] |
Lax PD. Weak solutions of nonlinear hyperbolic equations and their numerical computation. Communications on Pure and Applied Mathematics, 1954, 7: 159-193 doi: 10.1002/cpa.3160070112
|
[43] |
Woodward P, Colella P. The numerical simulation of two-dimensional fluid flow with strong shocks. Journal of Computational Physics, 1984, 54: 115-173 doi: 10.1016/0021-9991(84)90142-6
|
[44] |
Shu CW, Osher S. Efficient implementation of essentially non-oscillatory shock-capturing schemes II. Journal of Computational Physics, 1989, 83: 32-78 doi: 10.1016/0021-9991(89)90222-2
|
[45] |
Titarev VA, Toro EF. Finite-volume WENO schemes for three-dimensional conservation laws. Journal of Computational Physics, 2004, 201: 238-260 doi: 10.1016/j.jcp.2004.05.015
|
[46] |
Toro EF, Titarev VA. TVD fluxes for the high-order ADER schemes. Journal of Scientific Computing, 2005, 24(3): 285-309 doi: 10.1007/s10915-004-4790-8
|
[47] |
Titarev VA, Toro EF. WENO schemes based on upwind and centred TVD fluxes. Computers & Fluids, 2005, 34: 705-720
|
[48] |
Schulz-Rinne CW, Collins JP, Harland MG. Numerical solution of the Riemann problem for two-dimensional gas dynamics. SIAM Journal of Scientific Computing, 1993, 14(6): 1394-1414
|
[49] |
Schulz-Rinne CW. Classification of the Riemann problem for two-dimensional gas dynamics. SIAM Journal of Mathematical Analysis, 1993, 24: 76-88 doi: 10.1137/0524006
|
[50] |
Lax PD, Liu XD. Solution of two-dimensional Riemann problems of gas dynamics by positive schemes. SIAM Journal on Scientific Computing, 1998, 19(2): 319-340 doi: 10.1137/S1064827595291819
|
[51] |
Vevek US, Zang B, New TH. Adaptive mapping for high order WENO methods. Journal of Computational Physics, 2019, 381: 162-188 doi: 10.1016/j.jcp.2018.12.034
|
[52] |
Balsara DS, Rumpf T, Dumbser M, et al. Efficient, high accuracy ADER-WENO schemes for hydrodynamics and divergence-free magnetohydrodynamics. Journal of Computational Physics, 2009, 228: 2480-2516 doi: 10.1016/j.jcp.2008.12.003
|
[53] |
Fan P, Shen Y, Tian B, et al. A new smoothness indicator for improving the weighted essentially non-oscillatory scheme. Journal of Computational Physics, 2014, 269: 329-354 doi: 10.1016/j.jcp.2014.03.032
|
[54] |
Cockburn B, Shu CW. The Runge-Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems. Journal of Computational Physics, 1998, 141: 199-224 doi: 10.1006/jcph.1998.5892
|
[55] |
Zhu J, Qiu J. A new fifth order finite difference WENO scheme for solving hyperbolic conservation laws. Journal of Computational Physics, 2016, 318: 110-121 doi: 10.1016/j.jcp.2016.05.010
|
[56] |
Shi J, Zhang YT, Shu CW. Resolution of high order WENO schemes for complicated flow structures. Journal of Computational Physics, 2003, 186(2): 690-696 doi: 10.1016/S0021-9991(03)00094-9
|
[57] |
Chandrasekhar S. Hydrodynamic and Hydromagnetic Stability. London: Oxford University Press, 1961
|
[58] |
Frank A, Jones TW, Ryu D, et al. The magnetohydrodynamic Kelvin-Helmholtz instability: a two-dimensional numerical study. Astrophysics Journal, 1996, 460: 777-793 doi: 10.1086/177009
|
[59] |
San O, Kara K. Evaluation of Riemann flux solvers for WENO reconstruction schemes: Kelvin-Helmholtz instability. Computers & Fluids, 2015, 117: 24-41
|
[60] |
Kumar R, Chandrashekar P. Simple smoothness indicator and multi-level adaptive order WENO scheme for hyperbolic conservation laws. Journal of Computational Physics, 2018, 375: 1059-1090 doi: 10.1016/j.jcp.2018.09.027
|
[61] |
Hong Z, Ye ZY, Meng XZ. A mapping-function-free WENO-M scheme with low computational cost. Journal of Computational Physics, 2020, 405: 10914
|
[1] | Xu Xiaoyang, Zhao Yuting, Li Jiayu, Yu Peng. SIMULATIONS OF NON-ISOTHERMAL VISCOELASTIC COMPLEX FLOWS BY IMPROVED SPH METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(5): 1099-1112. DOI: 10.6052/0459-1879-22-602 |
[2] | Qiu Jingran, Zhao Lihao. PROGRESSES IN SWIMMING STRATEGY OF SMART PARTICLES IN COMPLEX FLOWS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(10): 2630-2639. DOI: 10.6052/0459-1879-21-402 |
[3] | Luo Xin, Wu Songping. AN IMPROVED FIFTH-ORDER WENO-Z+ SCHEME[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6): 1927-1939. DOI: 10.6052/0459-1879-19-249 |
[4] | Nianhua Wang, Xinghua Chang, Rong Ma, Laiping Zhang. VERIFICATION AND VALIDATION OF HYPERFLOW SOLVER FOR SUBSONIC AND TRANSONIC TURBULENT FLOW SIMULATIONS ON UNSTRUCTURED/HYBRID GRIDS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(3): 813-825. DOI: 10.6052/0459-1879-18-331 |
[5] | Jianqiang Chen, Yifeng Zhang, Dingwu Jiang, Meiliang Mao. Numerical simulation of complex flow with multi lateral jets interactions[J]. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(6): 735-743. DOI: 10.6052/0459-1879-2008-6-2008-020 |
[6] | Tieqiao Tang, Haijun Huang, S.C. Wong, Rui Jiang. Lane changing analysis for two-lane traffic flow[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(1): 49-54. DOI: 10.6052/0459-1879-2007-1-2006-282 |
[7] | Kejun Yang, Shuyou Cao, Xingnian Liu. Flow resistance in compound channels and its prediction methods[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(1): 23-31. DOI: 10.6052/0459-1879-2007-1-2006-017 |
[8] | 混流式转轮内有旋流动的全三元反问题计算[J]. Chinese Journal of Theoretical and Applied Mechanics, 1995, 27(S): 30-36. DOI: 10.6052/0459-1879-1995-S-1995-500 |
[9] | STABILITY OF A FLOW WITH SHOCK WAVE[J]. Chinese Journal of Theoretical and Applied Mechanics, 1990, 22(6): 742-747. DOI: 10.6052/0459-1879-1990-6-1995-1006 |
[10] | Yurun Fan, . 挤出胀大流动的有限元方法研究[J]. Chinese Journal of Theoretical and Applied Mechanics, 1990, 22(3): 285-292. DOI: 10.6052/0459-1879-1990-3-1995-946 |
1. |
刘雪琪,王志远,魏强,王敏,孙小辉,王雪瑞,张剑波,尹邦堂,孙宝江. 物理信息神经网络驱动的井筒温度场求解方法. 石油学报. 2025(02): 413-425 .
![]() | |
2. |
韦昌,樊昱晨,周永清,刘欣,李驰,王赫阳. 基于时间权重的物理信息神经网络求解非稳态偏微分方程. 力学学报. 2025(03): 755-766 .
![]() | |
3. |
王飞龙,胡挺,肖扬帆. 基于物理信息神经网络的水库调度研究. 水电能源科学. 2025(04): 213-216 .
![]() | |
4. |
王伟辉,李阳,徐慧群,张建军. 基于深度学习的冬枣智能分选技术与装备研究. 包装与食品机械. 2024(04): 94-100 .
![]() | |
5. |
李道伦,查文舒,刘旭亮,李祥,沈路航,周霞,郝玉祥,汪欢. 深度学习网络在非常规油气开发中的应用研究. 非常规油气. 2024(06): 1-7 .
![]() | |
6. |
苏阳,吴文华,杨志刚,陈浩. 机器学习加速相场计算的发展及应用. 鞍钢技术. 2024(06): 50-60+115 .
![]() | |
7. |
翁焕博,罗诚,袁荒. 基于晶体塑性力学框架的材料本构行为智能预测研究. 力学学报. 2024(12): 3468-3483 .
![]() |