EI、Scopus 收录
中文核心期刊
Zhong Wei, Jia Leiming, Wang Shufei, Tian Zhou. A high-efficiency and high-resolution mapped WENO scheme and its applications in the numerical simulation of problems with complex flows. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(11): 3010-3031. DOI: 10.6052/0459-1879-22-247
Citation: Zhong Wei, Jia Leiming, Wang Shufei, Tian Zhou. A high-efficiency and high-resolution mapped WENO scheme and its applications in the numerical simulation of problems with complex flows. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(11): 3010-3031. DOI: 10.6052/0459-1879-22-247

A HIGH-EFFICIENCY AND HIGH-RESOLUTION MAPPED WENO SCHEME AND ITS APPLICATIONS IN THE NUMERICAL SIMULATION OF PROBLEMS WITH COMPLEX FLOWS

  • Received Date: June 02, 2022
  • Accepted Date: September 05, 2022
  • Available Online: September 06, 2022
  • The traditional mapped weighted essentially non-oscillatory (WENO) schemes commonly suffer from the drawback of low-efficiency, since they usually require the mapping processes resulting in extra computational costs. The goal of the present work is to improve the efficiency of the mapped WENO schemes. By designing a set of approximate constant mapping function which is devised using an approximation of the standard signum function, a novel mapped WENO scheme is proposed. The new mapping function is devised to meet the overall criteria for a proper mapping function required in the design of the WENO-PM6 scheme. The WENO-PM6 scheme was presented to overcome the potential loss of accuracy of the well-validated WENO-M scheme in previously published literature. The new proposed mapped WENO scheme is denoted as WENO-ACM. It maintains almost all advantages of the WENO-PM6 scheme, such as low dissipations and high resolutions. However, it decreases the number of mathematical operations remarkably in every mapping process leading to a significant improvement of efficiency. Theoretical analysis indicates that the new scheme can attain the optimal convergence rate of accuracy regardless of critical points. The investigation of approximate dispersion relation (ADR) shows that the spectral properties of the new scheme are significantly improved. A variety of benchmark-test problems, including accuracy tests, standard shock-tube problem, Mach 3 shock-entropy wave interaction, Woodward-Colella interacting blast waves, 2D Riemann problem, double Mach reflection, forward-facing step problem, Rayleigh-Taylor instability and Kelvin-Helmholtz instability are conducted. Compared to the well-established WENO-JS, WENO-M, WENO-PM6 schemes comprehensively, the present scheme exhibits significantly improved high efficiency, very high resolution and sharp discontinuity capturing. Most importantly, the extra computational cost of WENO-ACM compared to WENO-JS is much lower than those of WENO-M and WENO-PM6. Specifically, WENO-ACM can reduce the extra computational cost compared to WENO-JS more than 80% and 90% against WENO-M and WENO-PM6, respectively.
  • [1]
    Jiang GS, Shu CW. Efficient implementation of weighted ENO schemes. Journal of Computational Physics, 1996, 126: 202-228 doi: 10.1006/jcph.1996.0130
    [2]
    Huang ZY, Lin G, Ardekani AM. A mixed upwind/central WENO scheme for incompressible two-phase flows. Journal of Computational Physics, 2019, 387: 455-480 doi: 10.1016/j.jcp.2019.02.043
    [3]
    Liu HP, Gao ZX, Jiang CW, et al. Numerical study of combustion effects on the development of supersonic turbulent mixing layer flows with WENO schemes. Computers and Fluids, 2019, 189: 82-93 doi: 10.1016/j.compfluid.2019.05.019
    [4]
    Kumar S, Singh P. High order WENO finite volume approximation for population density neuron model. Applied Mathematics and Computation, 2019, 356: 173-189 doi: 10.1016/j.amc.2019.03.020
    [5]
    Lefevre V, Garnica A, Lopez-Pamies O. A WENO finite-difference scheme for a new class of Hamilton-Jacobi equations in nonlinear solid mechanics. Computer Methods in Applied Mechanics and Engineering, 2019, 349: 173-189
    [6]
    Wang D, Byambaakhuu T. High-order lax-friedrichs WENO fast sweeping methods for the S N neutron transport equation. Nuclear Science and Engineering, 2019, 193(9): 982-990 doi: 10.1080/00295639.2019.1582316
    [7]
    Fu L, Tang Q. High-order low-dissipation targeted ENO schemes for ideal magnetohydrodynamics. Journal of Scientific Computing, 2019, 80: 692-716 doi: 10.1007/s10915-019-00941-2
    [8]
    Nonomura T, Fujii K. Characteristic finite-difference WENO scheme for multicomponent compressible fluid analysis: Overestimated quasi-conservative formulation maintaining equilibriums of velocity, pressure, and temperature. Journal of Computational Physics, 2017, 340: 358-388 doi: 10.1016/j.jcp.2017.02.054
    [9]
    童福林, 李新亮, 唐志共. 激波与转捩边界层干扰非定常特性数值分析. 力学学报, 2017, 49(1): 93-104 (Tong Fulin, Li Xinliang, Tang Zhigong. Numerical analysis of unsteady motion in shock wave/transitional boundary layer interaction. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(1): 93-104 (in Chinese) doi: 10.6052/0459-1879-16-224
    [10]
    童福林, 李欣, 于长平等. 高超声速激波湍流边界层干扰直接数值模拟研究. 力学学报, 2018, 50(2): 197-208 (Tong Fulin, Li Xin, Yu Changping, et al. Direct numerical simulation of hypersonic shock wave and turbulent boundary layer interactions. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(2): 197-208 (in Chinese) doi: 10.6052/0459-1879-17-239
    [11]
    Duan JM, Tang HZ. High-order accurate entropy stable finite difference schemes for the shallow water magnetohydrodynamics. Journal of Computational Physics, 2021, 431: 110136 doi: 10.1016/j.jcp.2021.110136
    [12]
    Duan JM, Tang HZ. An efficient ADER discontinuous Galerkin scheme for directly solving Hamilton-Jacobi equation. Journal of Computational Mathematics, 2020, 38(1): 58-83 doi: 10.4208/jcm.1902-m2018-0189
    [13]
    Balsara DS, Meyer C, Dumbser M, et al. Efficient implementation of ADER schemes for Euler and magnetohydrodynamical flows on structured meshes-Speed comparisons with Runge-Kutta methods. Journal of Computational Physics, 2013, 235: 934-969 doi: 10.1016/j.jcp.2012.04.051
    [14]
    Balsara DS, Dumbser M, Abgrall R. Multidimensional HLLC Riemann solver for unstructured meshes-with application to Euler and MHD flows. Journal of Computational Physics, 2014, 261: 172-208 doi: 10.1016/j.jcp.2013.12.029
    [15]
    贾雷明, 田宙. 竖直平面激波与水平热层作用后流场的理论计算方法研究. 爆炸与冲击, 2019, 39(12): 122202 (Jia Leiming, Tian Zhou. On the theoretical calculation method for interaction between the vertical plane shock wave and the horizontal thermal layer. Explosion and Shock Waves, 2019, 39(12): 122202 (in Chinese) doi: 10.11883/bzycj-2018-0510
    [16]
    骆信, 吴颂平. 改进的五阶WENO-Z + 格式. 力学学报, 2019, 51(6): 1927-1939 (Luo Xin, Wu Songping. An improved fifth-order WENO-Z + scheme. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6): 1927-1939 (in Chinese) doi: 10.6052/0459-1879-19-249
    [17]
    张树海. 加权紧致格式与 WENO 格式的比较研究. 力学学报, 2016, 48(2): 336-347 (Zhang Shuhai. The comparison of weighted compact schemes and WENO scheme. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(2): 336-347 (in Chinese)
    [18]
    韦志龙, 蒋勤. 基于 WENO-THINC/WLIC 模型的水气二相流数值模拟. 力学学报, 2021, 53(4): 973-985 (Wei Zhilong, Jiang Qin. Numerical study on water-air two-phase flow based on WENO-THINC/WLIC model. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(4): 973-985 (in Chinese) doi: 10.6052/0459-1879-20-430
    [19]
    刘瑜, 刘君, 唐玲艳等. 一种求解化学非平衡流动的新型解耦算法. 力学学报, 2015, 47(1): 82-94 (Liu Yu, Liu Jun, Tang Lingyan, et al. A novel uncoupled algorithm for solving chemical nonequilibrium flows. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(1): 82-94 (in Chinese) doi: 10.6052/0459-1879-14-089
    [20]
    崔竹轩, 丁举春, 司廷. 反射激波作用下三维凹气柱界面演化的数值研究. 力学学报, 2021, 53(5): 1246-1256 (Cui Zhuxuan, Ding Juchun, Si Ting. Numerical study on the evolution of three-dimensional concave cylindrical interface accelerated by reflected shock. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(5): 1246-1256 (in Chinese)
    [21]
    Zhao WG, Zheng HW, Liu FJ, et al. An efficient unstructured WENO method for supersonic reactive flows. Acta Mechanica Sinica, 2018, 34(4): 623-631 doi: 10.1007/s10409-018-0756-1
    [22]
    Huang WF, Ren YX, Jiang X. A simple algorithm to improve the performance of the WENO scheme on non-uniform grids. Acta Mechanica Sinica, 2018, 34(1): 37-47 doi: 10.1007/s10409-017-0715-2
    [23]
    余俊, 刘国振, 江俊等. 水下爆炸气泡射流载荷计算的新方法研究. 计算力学学报, 2021, 38(1): 120-125 (Yu Jun, Liu Guozhen, Jiang Jun, et al. Research on a new method of bubble jet load in underwater explosion. Chinese Journal of Computational Mechanics, 2021, 38(1): 120-125 (in Chinese) doi: 10.7511/jslx20200524001
    [24]
    徐丽, 姜明洋, 蔡静静等. 无黏可压缩流动的改进高精度方法. 计算力学学报, 2019, 36(6): 784-791 (Xu Li, Jiang Mingyang, Cai Jingjing, et al. On improved high accuracy scheme for compressible inviscid flow computation. Chinese Journal of Computational Mechanics, 2019, 36(6): 784-791 (in Chinese) doi: 10.7511/jslx20181113003
    [25]
    徐维铮, 孔祥韶, 郑成等. 三阶WENO格式精度分析与改进. 计算力学学报, 2018, 35(2): 51-55 (Xu Weizheng, Kong Xiangzhao, Zheng Cheng, et al. Precision analysis and improvement of third-order WENO scheme. Chinese Journal of Computational Mechanics, 2018, 35(2): 51-55 (in Chinese)
    [26]
    Liu XD, Osher S, Chan T. Weighted essentially non-oscillatory schemes. Journal of Computational Physics, 1994, 115: 200-212 doi: 10.1006/jcph.1994.1187
    [27]
    Henrick AK, Aslam TD, Powers JM. Mapped weighted essentially non-oscillatory schemes: Achieving optimal order near critical points. Journal of Computational Physics, 2005, 207: 542-567
    [28]
    Feng H, Hu FX, Wang R. A new mapped weighted essentially non-oscillatory scheme. Journal of Scientific Computing, 2012, 51: 449-473 doi: 10.1007/s10915-011-9518-y
    [29]
    Feng H, Huang C, Wang R. An improved mapped weighted essentially non-oscillatory scheme. Applied Mathematics and Computation, 2014, 232: 453-468 doi: 10.1016/j.amc.2014.01.061
    [30]
    Li Q, Liu PX, Zhang HX. Piecewise polynomial mapping method and corresponding WENO scheme with improved resolution. Communications in Computational Physics, 2015, 18(5): 1417-1444 doi: 10.4208/cicp.150215.250515a
    [31]
    Li R, Zhong W. A modified adaptive improved mapped WENO method. Communications in Computational Physics, 2021, 30(5): 1545-1588 doi: 10.4208/cicp.OA-2021-0057
    [32]
    Wang R, Feng H, Huang C. A new mapped weighted essentially non-oscillatory method using rational function. Journal of Scientific Computing, 2016, 67: 540-580 doi: 10.1007/s10915-015-0095-3
    [33]
    Borges R, Carmona M, Costa B, et al. An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws. Journal of Computational Physics, 2008, 227(6): 3191-3211 doi: 10.1016/j.jcp.2007.11.038
    [34]
    Zhang R, Zhang MP, Shu CW. On the order of accuracy and numerical performance of two classes of finite volume WENO schemes. Communications in Computational Physics, 2011, 9(3): 807-827 doi: 10.4208/cicp.291109.080410s
    [35]
    Gottlieb S, Shu CW. Total variation diminishing Runge-Kutta schemes. Mathematics of Computation, 1998, 67: 73-85 doi: 10.1090/S0025-5718-98-00913-2
    [36]
    Gottlieb S, Shu CW, Tadmor E. Strong stability-preserving high-order time discretization methods. SIAM Review, 2001, 43: 89-112 doi: 10.1137/S003614450036757X
    [37]
    Shu CW, Osher S. Efficient implementation of essentially non-oscillatory shock capturing schemes. Journal of Computational Physics, 1988, 77: 439-471 doi: 10.1016/0021-9991(88)90177-5
    [38]
    Pirozzoli S. On the spectral properties of shock-capturing schemes. Journal of Computational Physics, 2006, 219(2): 489-497 doi: 10.1016/j.jcp.2006.07.009
    [39]
    涂国华, 邓小刚, 毛枚良. 5阶非线性WCNS和WENO差分格式频谱特性比较. 空气动力学学报, 2012, 30(6): 709-712 (Tu Guo-hua, Deng Xiaogang, Mao Meiliang. Spectral property comparison of fifth-order nonlinear WCNS and WENO difference schemes. Acta Aerodynamica Sinica, 2012, 30(6): 709-712 (in Chinese)
    [40]
    张瑞. 有限体积 WENO 格式及其应用. [博士论文]. 合肥: 中国科学技术大学, 2010: 29-50

    Zhang Rui. Finite volume WENO schemes and applications. [PhD Thesis]. Hefei: University of Science and Technology of China, 2010: 29-50 (in Chinese)
    [41]
    Sod GA. A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws. Journal of Computational Physics, 1978, 27: 1-31 doi: 10.1016/0021-9991(78)90023-2
    [42]
    Lax PD. Weak solutions of nonlinear hyperbolic equations and their numerical computation. Communications on Pure and Applied Mathematics, 1954, 7: 159-193 doi: 10.1002/cpa.3160070112
    [43]
    Woodward P, Colella P. The numerical simulation of two-dimensional fluid flow with strong shocks. Journal of Computational Physics, 1984, 54: 115-173 doi: 10.1016/0021-9991(84)90142-6
    [44]
    Shu CW, Osher S. Efficient implementation of essentially non-oscillatory shock-capturing schemes II. Journal of Computational Physics, 1989, 83: 32-78 doi: 10.1016/0021-9991(89)90222-2
    [45]
    Titarev VA, Toro EF. Finite-volume WENO schemes for three-dimensional conservation laws. Journal of Computational Physics, 2004, 201: 238-260 doi: 10.1016/j.jcp.2004.05.015
    [46]
    Toro EF, Titarev VA. TVD fluxes for the high-order ADER schemes. Journal of Scientific Computing, 2005, 24(3): 285-309 doi: 10.1007/s10915-004-4790-8
    [47]
    Titarev VA, Toro EF. WENO schemes based on upwind and centred TVD fluxes. Computers & Fluids, 2005, 34: 705-720
    [48]
    Schulz-Rinne CW, Collins JP, Harland MG. Numerical solution of the Riemann problem for two-dimensional gas dynamics. SIAM Journal of Scientific Computing, 1993, 14(6): 1394-1414
    [49]
    Schulz-Rinne CW. Classification of the Riemann problem for two-dimensional gas dynamics. SIAM Journal of Mathematical Analysis, 1993, 24: 76-88 doi: 10.1137/0524006
    [50]
    Lax PD, Liu XD. Solution of two-dimensional Riemann problems of gas dynamics by positive schemes. SIAM Journal on Scientific Computing, 1998, 19(2): 319-340 doi: 10.1137/S1064827595291819
    [51]
    Vevek US, Zang B, New TH. Adaptive mapping for high order WENO methods. Journal of Computational Physics, 2019, 381: 162-188 doi: 10.1016/j.jcp.2018.12.034
    [52]
    Balsara DS, Rumpf T, Dumbser M, et al. Efficient, high accuracy ADER-WENO schemes for hydrodynamics and divergence-free magnetohydrodynamics. Journal of Computational Physics, 2009, 228: 2480-2516 doi: 10.1016/j.jcp.2008.12.003
    [53]
    Fan P, Shen Y, Tian B, et al. A new smoothness indicator for improving the weighted essentially non-oscillatory scheme. Journal of Computational Physics, 2014, 269: 329-354 doi: 10.1016/j.jcp.2014.03.032
    [54]
    Cockburn B, Shu CW. The Runge-Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems. Journal of Computational Physics, 1998, 141: 199-224 doi: 10.1006/jcph.1998.5892
    [55]
    Zhu J, Qiu J. A new fifth order finite difference WENO scheme for solving hyperbolic conservation laws. Journal of Computational Physics, 2016, 318: 110-121 doi: 10.1016/j.jcp.2016.05.010
    [56]
    Shi J, Zhang YT, Shu CW. Resolution of high order WENO schemes for complicated flow structures. Journal of Computational Physics, 2003, 186(2): 690-696 doi: 10.1016/S0021-9991(03)00094-9
    [57]
    Chandrasekhar S. Hydrodynamic and Hydromagnetic Stability. London: Oxford University Press, 1961
    [58]
    Frank A, Jones TW, Ryu D, et al. The magnetohydrodynamic Kelvin-Helmholtz instability: a two-dimensional numerical study. Astrophysics Journal, 1996, 460: 777-793 doi: 10.1086/177009
    [59]
    San O, Kara K. Evaluation of Riemann flux solvers for WENO reconstruction schemes: Kelvin-Helmholtz instability. Computers & Fluids, 2015, 117: 24-41
    [60]
    Kumar R, Chandrashekar P. Simple smoothness indicator and multi-level adaptive order WENO scheme for hyperbolic conservation laws. Journal of Computational Physics, 2018, 375: 1059-1090 doi: 10.1016/j.jcp.2018.09.027
    [61]
    Hong Z, Ye ZY, Meng XZ. A mapping-function-free WENO-M scheme with low computational cost. Journal of Computational Physics, 2020, 405: 10914
  • Related Articles

    [1]Xu Xiaoyang, Zhao Yuting, Li Jiayu, Yu Peng. SIMULATIONS OF NON-ISOTHERMAL VISCOELASTIC COMPLEX FLOWS BY IMPROVED SPH METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(5): 1099-1112. DOI: 10.6052/0459-1879-22-602
    [2]Qiu Jingran, Zhao Lihao. PROGRESSES IN SWIMMING STRATEGY OF SMART PARTICLES IN COMPLEX FLOWS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(10): 2630-2639. DOI: 10.6052/0459-1879-21-402
    [3]Luo Xin, Wu Songping. AN IMPROVED FIFTH-ORDER WENO-Z+ SCHEME[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6): 1927-1939. DOI: 10.6052/0459-1879-19-249
    [4]Nianhua Wang, Xinghua Chang, Rong Ma, Laiping Zhang. VERIFICATION AND VALIDATION OF HYPERFLOW SOLVER FOR SUBSONIC AND TRANSONIC TURBULENT FLOW SIMULATIONS ON UNSTRUCTURED/HYBRID GRIDS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(3): 813-825. DOI: 10.6052/0459-1879-18-331
    [5]Jianqiang Chen, Yifeng Zhang, Dingwu Jiang, Meiliang Mao. Numerical simulation of complex flow with multi lateral jets interactions[J]. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(6): 735-743. DOI: 10.6052/0459-1879-2008-6-2008-020
    [6]Tieqiao Tang, Haijun Huang, S.C. Wong, Rui Jiang. Lane changing analysis for two-lane traffic flow[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(1): 49-54. DOI: 10.6052/0459-1879-2007-1-2006-282
    [7]Kejun Yang, Shuyou Cao, Xingnian Liu. Flow resistance in compound channels and its prediction methods[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(1): 23-31. DOI: 10.6052/0459-1879-2007-1-2006-017
    [8]混流式转轮内有旋流动的全三元反问题计算[J]. Chinese Journal of Theoretical and Applied Mechanics, 1995, 27(S): 30-36. DOI: 10.6052/0459-1879-1995-S-1995-500
    [9]STABILITY OF A FLOW WITH SHOCK WAVE[J]. Chinese Journal of Theoretical and Applied Mechanics, 1990, 22(6): 742-747. DOI: 10.6052/0459-1879-1990-6-1995-1006
    [10]Yurun Fan, . 挤出胀大流动的有限元方法研究[J]. Chinese Journal of Theoretical and Applied Mechanics, 1990, 22(3): 285-292. DOI: 10.6052/0459-1879-1990-3-1995-946
  • Cited by

    Periodical cited type(7)

    1. 刘雪琪,王志远,魏强,王敏,孙小辉,王雪瑞,张剑波,尹邦堂,孙宝江. 物理信息神经网络驱动的井筒温度场求解方法. 石油学报. 2025(02): 413-425 .
    2. 韦昌,樊昱晨,周永清,刘欣,李驰,王赫阳. 基于时间权重的物理信息神经网络求解非稳态偏微分方程. 力学学报. 2025(03): 755-766 . 本站查看
    3. 王飞龙,胡挺,肖扬帆. 基于物理信息神经网络的水库调度研究. 水电能源科学. 2025(04): 213-216 .
    4. 王伟辉,李阳,徐慧群,张建军. 基于深度学习的冬枣智能分选技术与装备研究. 包装与食品机械. 2024(04): 94-100 .
    5. 李道伦,查文舒,刘旭亮,李祥,沈路航,周霞,郝玉祥,汪欢. 深度学习网络在非常规油气开发中的应用研究. 非常规油气. 2024(06): 1-7 .
    6. 苏阳,吴文华,杨志刚,陈浩. 机器学习加速相场计算的发展及应用. 鞍钢技术. 2024(06): 50-60+115 .
    7. 翁焕博,罗诚,袁荒. 基于晶体塑性力学框架的材料本构行为智能预测研究. 力学学报. 2024(12): 3468-3483 . 本站查看

    Other cited types(5)

Catalog

    Article Metrics

    Article views (678) PDF downloads (140) Cited by(12)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return