Citation: | Deng Bozhi, Nie Baisheng, Liu Xianfeng, Shi Farui. Characteristics of the heterogeneous mechanical response of coal at the nano and micro-scale using instrumented indentation experiments. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(8): 2304-2317. DOI: 10.6052/0459-1879-22-244 |
[1] |
He J, Dou LM, Gong SY, et al. Rock burst assessment and prediction by dynamic and static stress analysis based on micro-seismic monitoring. Inter. J. Rock Mech. Min. Sci., 2017, 93: 46-53 doi: 10.1016/j.ijrmms.2017.01.005
|
[2] |
许江, 杨孝波, 周斌, 等. 突出过程中煤层瓦斯压力与温度演化规律研究[J]. 中国矿业 大学学报, 2019, 48(6): 1177-1187.
Xu J, Yang XB, Zhou B, et al. Study of evolution law of gas pressure and temperature in coal seam during outburst[J]. Journal of China University of Mining & Technology, 2019,48(6):1177-1187. (in Chinese)
|
[3] |
潘一山, 代连朋. 煤矿冲击地压发生理论公式[J]. 煤炭学报, 2021, 46(3): 789-799. doi: 10.13225/j.cnki.jccs.yt20.1946
Pan YS, and Dai LP. Theoretical formula of rock burst in coal mines[J]. Journal of China Coal Society, 2021, 46(3): 789-799. (in Chinese) doi: 10.13225/j.cnki.jccs.yt20.1946
|
[4] |
王振, 尹光志, 胡千庭, 等. 高瓦斯煤层冲击地压与突出的诱发转化条件研究[J]. 采矿与安全工程学报, 2010, 27(4): 572-581. doi: 10.3969/j.issn.1673-3363.2010.04.024
Wang Z, Yin GZ, Hu QT, et al. Inducing and transforming conditions from rockburst to coal-gas outburst in a high gassy coal seam [J]. Journal of Mining and Safety Engineering, 2010, 27(4): 572-581. (in Chinese) doi: 10.3969/j.issn.1673-3363.2010.04.024
|
[5] |
Aguado MD, Nicieza CG. Control and prevention of gas outbursts in coal mines, Riosa-Olloniego coalfield, Spain. International Journal of Coal Geology, 2007, 69: 253-266 doi: 10.1016/j.coal.2006.05.004
|
[6] |
何学秋, 周世宁. 煤和瓦斯突出机理的流变假说[J]. 煤矿安全, 1991(10): 1-7. doi: 10.13347/j.cnki.mkaq.1991.10.001
He XQ, and Zhou SN. Rheological hypothesis of coal and gas outburst mechanism [J]. Safety in Coal Mines, 1991(10): 1-7. (in Chinese) doi: 10.13347/j.cnki.mkaq.1991.10.001
|
[7] |
胡千庭, 周世宁, 周心权. 煤与瓦斯突出过程的力学作用机理[J]. 煤炭学报, 2008, 33(12): 1368-1372. doi: 10.3321/j.issn:0253-9993.2008.12.008
Hu QT, Zhou SN, Zhou XQ. Mechanical mechanism of coal and gas outburst process [J]. Journal of China Coal Society, 2008, 33(12): 1368-1372. (in Chinese) doi: 10.3321/j.issn:0253-9993.2008.12.008
|
[8] |
姜耀东, 潘一山, 姜福兴, 等. 我国煤炭开采中的冲击地压机理和防治[J]. 煤炭学报, 2014, 39(02): 205-213. doi: 10.13225/j.cnki.jccs.2013.0024
Jiang YD, Pan YS, Jiang FX, et al. State of the art review on mechanism and prevention of coal bumps in China [J]. Journal of China Coal Society, 2014, 39(02): 205-213.(in Chinese) doi: 10.13225/j.cnki.jccs.2013.0024
|
[9] |
齐庆新, 李一哲, 赵善坤, 等. 我国煤矿冲击地压发展70年: 理论与技术体系的建立与思考[J]. 煤炭科学技术, 2019, 47(09): 1-40.
Qi QX, Li YZ, Zhao SK, et al. Seventy years of development of coal mine rockburst in China: establishment and consideration of theory and technology system [J]. Coal Science and Technology, 2019, 47(09): 1-40.(in Chinese)
|
[10] |
潘一山. 煤与瓦斯突出、冲击地压复合动力灾害一体化研究[J]. 煤炭学报, 2016, 41(1): 105-112. doi: 10.13225/j.cnki.jccs.2015.9034
Pan YS. Integrated study on compound dynamic disaster of coal-gas outburst and rockburst [J]. Journal of China Coal Society, 2016, 41(1): 105-112.(in Chinese) doi: 10.13225/j.cnki.jccs.2015.9034
|
[11] |
Wang C, Yang S, Yang D, et al. Experimental analysis of the intensity and evolution of coal and gas outbursts. Fuel, 2018, 226: 252-262 doi: 10.1016/j.fuel.2018.03.165
|
[12] |
唐春安. 岩石破裂过程中的灾变. 北京: 煤炭工业出版社,1993
Dang CA. Evolution of Disaster in the Process of Rock Fracture. Beijing: China Coal Industry Press, 1993 (in Chinese)
|
[13] |
尹光志, 李星, 鲁俊, 等. 深部开采动静载荷作用下复合动力灾害致灾机理研究[J]. 煤炭学报, 2017, 42(9): 2316 -2326. doi: 10.13225/j.cnki.jccs.2017.0139
Yin GZ, Li X, Lu J, et al. Disaster-causing mechanism of compound dynamic disaster in deep mining under static and dynamic load conditions [J]. Journal of China Coal Society, 2017, 42(9): 2316 -2326.(in Chinese) doi: 10.13225/j.cnki.jccs.2017.0139
|
[14] |
聂百胜, 马延崑, 何学秋, 等. 煤与瓦斯突出微观机理探索研究[J]. 中国矿业大学学报, 2022, 51(02): 207-220.
Nie BS, Ma YK, He XQ, et al. Micro-scale mechanism of coal and gas outburst: A preliminary study [J]. Journal of China University of Mining & Technology, 2022, 51(02): 207-220.(in Chinese)
|
[15] |
Wang E, He X, Wei J, et al. Electromagnetic emission graded warning model and its applications against coal rock dynamic collapses. International Journal of Rock Mechanics and Mining Sciences, 2011, 48(4): 556-564 doi: 10.1016/j.ijrmms.2011.02.006
|
[16] |
Chen Z, Liu J, Elsworth D, et al. Roles of coal heterogeneity on evolution of coal permeability under unconstrained boundary conditions. Journal of Natural Gas Science and Engineering, 2013, 15: 38-52 doi: 10.1016/j.jngse.2013.09.002
|
[17] |
Heriawan MN, Koike K. Identifying spatial heterogeneity of coal resource quality in a multilayer coal deposit by multivariate geostatistics. International Journal of Coal Geology, 2008, 73(3-4): 307-330 doi: 10.1016/j.coal.2007.07.005
|
[18] |
Zhao J, Xu H, Tang D, et al. Coal seam porosity and fracture heterogeneity of macrolithotypes in the Hancheng Block, eastern margin, Ordos Basin, China. International Journal of Coal Geology, 2016, 159: 18-29 doi: 10.1016/j.coal.2016.03.019
|
[19] |
Cardott BJ, Curtis ME. Identification and nanoporosity of macerals in coal by scanning electron microscopy. International Journal of Coal Geology, 2018, 190: 205-217 doi: 10.1016/j.coal.2017.07.003
|
[20] |
Hower JC, Trinkle EJ, Raione, RP. Vickers microhardness of telovitrinite and pseudovitrinite from high volatile bituminous Kentucky coals. International Journal of Coal Geology, 2008, 75(2): 76-80 doi: 10.1016/j.coal.2008.03.002
|
[21] |
Kossovich EL, Dobryakova NN, Epshtein SA, et al. Mechanical properties of coal microcomponents under continuous indentation. Journal of Mining Science, 2016, 52(5): 906-912 doi: 10.1134/S1062739116041382
|
[22] |
Kossovich EL, Borodich FM, Epshtein SA, et al. Mechanical, structural and scaling properties of coals: depth-sensing indentation studies. Applied Physics A, 2019, 125(3): 1-15
|
[23] |
Zhang Y, Lebedev M, Al-Yaseri A, et al. Nanoscale rock mechanical property changes in heterogeneous coal after water adsorption. Fuel, 2018, 218: 23-32 doi: 10.1016/j.fuel.2018.01.006
|
[24] |
Yu H, Zhang Y, Lebedev M, et al. Nanoscale geomechanical properties of Western Australian coal. Journal of Petroleum Science and Engineering, 2018, 162: 736-746 doi: 10.1016/j.petrol.2017.11.001
|
[25] |
Li, Y, Yang, J, Pan, Z. et al Nanoscale pore structure and mechanical property analysis of coal:An insight combining AFM and SEM images. Fuel, 2020, 260: 1-9
|
[26] |
孙长伦, 李桂臣, GOMAH ME, 等. 基于纳米压痕技术的破碎煤样力学特性实验研究[J]. 煤炭学报, 2020, 45(S2): 682-691. doi: 10.13225/j.cnki.jccs.2020.0351
Sun CL, Li GC, GOMAH ME, et al. Experimental investigation on the mechanical properties of crushed coal samples based on the nanoindentation technique [J]. Journal of China Coal Society, 2020, 45(S2):682-691.(in Chinese) doi: 10.13225/j.cnki.jccs.2020.0351
|
[27] |
张慧, 李小颜, 郝琦等. 中国煤的扫描电子显微镜研究. 北京: 地质出版社, 2003
Zhang H, Li XY, Hao Q, et al. Scanning electron microscopy of Chinese coal. Beijing: Geological Publishing House, 2003 (in Chinese)
|
[28] |
Li G, Qin Y, Zhou X, et al. Comparative analysis of the pore structure of fusain in lignite and high-volatile bituminous coal. Journal of Natural Gas Science and Engineering, 2021, 90: 103955
|
[29] |
Oliver WC, Pharr GM. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. Journal of Materials Research, 1992, 7(6): 1564-1583 doi: 10.1557/JMR.1992.1564
|
[30] |
张泰华. 微/纳米力学测试技术. 北京:科学出版社, 2013
Zhang TH. Micro/nano-mechanical Testing Techniques. Beijing: Science Press, 2013 (in Chinese)
|
[1] | Zhao Shouming, Zhu Yuanquan, Peng Guangjian, Zhang Taihua. PROGRESS IN DYNAMIC MECHANICAL PROPERTIES TESTING TECHNOLOGY OF MICRO-ZONES MATERIALS—FROM INDENTATION HARDNESS MEASUREMENT TO INSTRUMENTED INDENTATION TESTING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(12): 3537-3552. DOI: 10.6052/0459-1879-24-259 |
[2] | Peng Guangjian, Zhang Taihua. PROGRESS IN INSTRUMENTED INDENTATION METHODS FOR DETERMINATION OF SURFACE RESIDUAL STRESS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(8): 2287-2303. DOI: 10.6052/0459-1879-22-222 |
[3] | Tang Jupeng, Tian Hunan, Pan Yishan. EXPERIMENT OF ADSORPTION-DESORPTION HYSTERSIS OF GAS IN COAL SHALE BY USING NUCLEAR MAGNETIC RESONANCE SPECTRUMS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(8): 2193-2204. DOI: 10.6052/0459-1879-21-264 |
[4] | Zhang Xirun, Cai Lixun, Chen Hui. HYPERELASTIC INDENTATION MODELS AND THE DUAL-INDENTATION METHOD BASED ON ENERGY DENSITY EQUIVALENCE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(3): 787-796. DOI: 10.6052/0459-1879-20-023 |
[5] | Chen Ke, Feng Yihui, Peng Guangjian, Zhang Taihua. THERMAL CONTACT-INDUCED DISPLACEMENT DRIFT INHIGH-TEMPERATURE NANOINDENTATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(2): 270-278. DOI: 10.6052/0459-1879-14-297 |
[6] | Peng Jiang, Taihua Zhang, Rong Yang, Naigang Liang. A new spherical indentation-based method to extract plastic material parameters[J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(5): 730-738. DOI: 10.6052/0459-1879-2009-5-2008-194 |
[7] | Dongxu Liu, Taihua Zhang, Yong Huan. Development of macro-depth-sensing-indentation instrumentation[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 39(3): 350-355. DOI: 10.6052/0459-1879-2007-3-2006-060 |
[8] | EXPERIMENTAL STUDIES ON TENSILE STRESS STRAIN RELATION OF SOFT COAL[J]. Chinese Journal of Theoretical and Applied Mechanics, 1997, 29(5): 582-589. DOI: 10.6052/0459-1879-1997-5-1995-269 |
[9] | ONE-DIMENSIONAL FLOW MODEL FOR COAL-GAS OUTBURSTS AND INITIATION CRITERION[J]. Chinese Journal of Theoretical and Applied Mechanics, 1992, 24(4): 418-431. DOI: 10.6052/0459-1879-1992-4-1995-757 |
[10] | INCIPIENT FRACTURE OF COAL UNDER ONE DIMENSIONAL GAS SEEPAGE[J]. Chinese Journal of Theoretical and Applied Mechanics, 1990, 22(2): 154-162. DOI: 10.6052/0459-1879-1990-2-1995-926 |