Citation: | Zeng Dandan, Wan Tian, Li Shuaihui. Study of the temporal-spatial fluctuations and empirical model of near space atmospheric density. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(11): 2984-2993 doi: 10.6052/0459-1879-22-231 |
[1] |
石广玉, 黎许, 郭建东等. 大气臭氧与气溶胶垂直分布的高空气球探测. 大气科学, 1996, 20(4): 401-407 (Shi Guangyu, Li Xu, Guo Jiandong, et al. Balloon observation of atmospheric ozone and aerosols. Scientia Atmospherica Sinica, 1996, 20(4): 401-407 (in Chinese) doi: 10.3878/j.issn.1006-9895.1996.04.03
|
[2] |
石广玉, 白宇波, 岩坂泰信等. 拉萨上空大气臭氧垂直分布的高空气球探测. 地球科学进展, 2000, 15: 522-524 (Shi Guangyu, Bai Yubo, Yasunobu Iwasaka, et al. A balloon measurement of the ozone vertical distribution over LAHSA. Advance in Earth Sciences, 2000, 15: 522-524 (in Chinese) doi: 10.3321/j.issn:1001-8166.2000.05.006
|
[3] |
Zandt TEV. A brief history of the development of wind-profiling or MST radars. Annales Geophysicae, 2000, 18: 740-749 doi: 10.1007/s00585-000-0740-4
|
[4] |
赵一鸣, 李艳华, 商雅楠等. 激光雷达的应用及发展趋势. 遥测遥控, 2014, 35: 4-22 (Zhao Yiming, Li Yanhua, Shang Yanan, et al. Application and development direction of Lidar. Journal of Telemetry, Tracking and Command, 2014, 35: 4-22 (in Chinese) doi: 10.3969/j.issn.2095-1000.2014.05.002
|
[5] |
杨勇, 程学武, 杨国韬等. 高层大气探测激光雷达研究进展. 量子电子学报, 2020, 37: 566-579 (Yang Yong, Cheng Xuewu, Yang Guotao, et al. Research progress of lidar for upper atmosphere. Chinese Journal of Quantum Electronics, 2020, 37: 566-579 (in Chinese)
|
[6] |
秦国泰, 邱时彦, 贺爱卿等. 神舟 2 号大气密度探测器的探测结果 ( I ) 日照和阴影区域热层大气密度变化. 空间科学学报, 2002, 22(2): 136-141 (Qin Guotai, Qiu Shiyan, He Aiqing, et al. “SZ-2” atmospheric density detector measurement result (I) change of the thermosphere density in the sunshine and shaded area. Chinese Journal of Space Sciences, 2002, 22(2): 136-141 (in Chinese) doi: 10.3969/j.issn.0254-6124.2002.02.006
|
[7] |
Reber CA, Trevathan CE, Mcneal RJ, et al. The Upper Atmosphere Research Satellite (UARS) mission. Journal of Geophysical Research, 1993, 98: 10643-10647 doi: 10.1029/92JD02828
|
[8] |
Schwartz MJ, Lambert A, Manney GL, et al. Validation of the Aura Microwave Limb Sounder temperature and geopotential height measurements. Journal of Geophysical Research, 2008, 113: D15S11
|
[9] |
宫晓艳, 胡雄, 吴小成等. COSMIC大气掩星与SABER/TIMED探测温度数据比较. 地球物理学报, 2013, 56(7): 2152-2162
Gong Xiao-Yan, Hu Xiong, Wu Xiao-cheng, et al. Comparisions of temperature measurement between cosmic atmospheric radio occultation and SABER/TIMED, Chinese Journal of Geophysics, 2013, 56(7): 2152-2162 (in Chinese))
|
[10] |
Steinerl AK, Kirchengast G, Foelsche U, et al. GNSS occultation sounding for climate monitoring. Physics and Chemistry of the Earth, Parts A, 2001, 26(3): 113-124 doi: 10.1016/S1464-1895(01)00034-5
|
[11] |
Hajj GA, Kursinski ER, Romans LJ, et al. A technical description of atmospheric sounding by GPS occultation. Journal of Atmospheric and Solar-Terrestrial Physics, 2002, 64: 451-469 doi: 10.1016/S1364-6826(01)00114-6
|
[12] |
Larar AM, Russell Iii JM, Mlynczak MG, et al. Overview of the SABER experiment and preliminary calibration results. Proceedings of SPIE, 1999, 3756: 277-288 doi: 10.1117/12.366382
|
[13] |
NOAA, NASA, USAF. U.S. Standard Atmosphere. Washington D.C. : U.S. Government Printing Office, 1976
|
[14] |
Hedin AE. MSIS86 themospheric model. Journal of Geophysical Research, 1987, 92: 4649-4662
|
[15] |
Picone JM, Hedin AE, Drob DP, et al. NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues. Journal of Geophysical Research: Space Physics, 2002, 107(A12): SIA15
|
[16] |
Emmert JT, Drob DP, Picone JM, et al. NRLMSIS 2.0: A whole-atmosphere empirical model of temperature and neutral species densities. Earth and Space Science, 2021, 8: e2020EA001321
|
[17] |
Vitharana A, Zhu X, Du J, et al. Statistical modeling of tidal weather in the mesosphere and lower thermosphere. Journal of Geophysical Research: Atmospheres, 2019, 124(16): 9011-9027 doi: 10.1029/2019JD030573
|
[18] |
Weimer DR, Mehta PM, Tobiska WK, et al. Improving neutral density predictions using exospheric temperatures calculated on a geodesic, polyhedral grid. Space Weather, 2020, 18: e2019SW002355
|
[19] |
Katsuda S, Fujiwara H, Ishisaki Y, et al. New measurement of the vertical atmospheric density profile from occultations of the crab nebula with X-ray astronomy satellites Suzaku and Hitomi. Journal of Geophysical Research-Space Physics, 2021, 126: e2020JA028886
|
[20] |
Yu D, Li H, Li B, et al. New method for Earth neutral atmospheric density retrieval based on energy spectrum fitting during occultation with LE/Insight-HXMT. Advances in Space Research, 2022, 69(9): 3426-3434 doi: 10.1016/j.asr.2022.02.030
|
[21] |
Determan JR, Budzien SA, Kowalski MP, et al. Measuring atmospheric density with X-ray occultation sounding. Journal of Geophysical Research: Space Physics, 2007, 112: A06323
|
[22] |
Emmert JT. Thermospheric mass density: A review. Advances in Space Research, 2015, 56: 773-824 doi: 10.1016/j.asr.2015.05.038
|
[23] |
Cheng X, Yang J, Xiao C, et al. Density correction of NRLMSISE-00 in the middle atmosphere (20–100 km) based on TIMED/SABER density data. Atmosphere, 2020, 11(4): 341 doi: 10.3390/atmos11040341
|
[24] |
王淼, 基于TIMED/SABER数据的临近空间环境建模研究. [硕士论文]. 南京: 南京信息工程大学, 2020
Wang Miao. Research on near space environment modeling based on TIMED/SABER observation. [Master Thesis]. Nanjing: Nan jing University of Information Science and Technology, 2020 (in Chinese))
|
[25] |
Dawkins ECM, Feofilov A, Chu X, et al. Validation of SABER v2.0 operational temperature data with ground-based lidars in the mesosphere-lower thermosphere region (75-105 km). Journal of Geophysical Research: Atmospheres, 2018, 123: 9916-9934 doi: 10.1029/2018JD028742
|
[26] |
Mertens CJ. SABER observations of mesospheric temperatures and comparisons with falling sphere measurements taken during the 2002 summer MaCWAVE campaign. Geophysical Research Letters, 2004, 31: L03105
|
[27] |
Wrasse CM, Fechine J, Takahashi H, et al. Temperature comparison between CHAMP radio occultation and TIMED/SABER measurements in the lower stratosphere. Advances in Space Research, 2008, 41(9): 1423-1428 doi: 10.1016/j.asr.2007.06.073
|
[28] |
Xu J, She CY, Yuan W, et al. Comparison between the temperature measurements by TIMED/SABER and lidar in the midlatitude. Journal of Geophysical Research, 2006, 111: A10S09
|
[29] |
Zou X, Yang G, Chen L, et al. Rayleigh lidar observations and comparisons with TIMED/SABER of typical case studies in Beijing (40.5° N, 116. 2° E), China. Atmosphere, 2021, 12(10): 1237
|
[30] |
Remsberg EE, Marshall BT, Garcia-Comas M, et al. Assessment of the quality of the Version 1.07 temperature-versus-pressure profiles of the middle atmosphere from TIMED/SABER. Journal of Geophysical Research, 2008, 113: D17101 doi: 10.1029/2008JD010013
|
[31] |
Kumari K, Oberheide J, Lu X, The tidal response in the mesosphere/lower thermosphere to the madden‐Julian oscillation observed by SABER. Geophysical Research Letters, 2020, 47: e2020GL089172
|
[32] |
Zhao XR, Sheng Z, Shi HQ, et al. Long‐term trends and solar responses of the mesopause temperatures observed by SABER during the 2002–2019 period. Journal of Geophysical Research: Atmospheres, 2020, 125: e2020JD032418
|
[33] |
Kawatani Y, Hirooka T, Hamilton K, et al. Representation of the equatorial stratopause semiannual oscillation in global atmospheric reanalyses. Atmospheric Chemistry and Physics, 2020, 20(14): 9115-9133 doi: 10.5194/acp-20-9115-2020
|
[34] |
Alexander P, Torre A, Kaifler N, et al. Temperature profiles from two close lidars and a satellite to infer the structure of a dominant gravity wave. Earth and Space Science, 2020, 7: e2020EA001074
|
[35] |
Strelnikova I, Almowafy M, Baumgarten G, et al. Seasonal cycle of gravity wave potential energy densities from lidar and satellite observations at 54° and 69°N. Journal of the Atmospheric Sciences, 2021, 78(4): 1359-1386 doi: 10.1175/JAS-D-20-0247.1
|
[36] |
Xiao C, Hu X, Tian J. Global temperature stationary planetary waves extending from 20 to 120 km observed by TIMED/SABER. Journal of Geophysical Research, 2009, 114: D17101 doi: 10.1029/2008JD011349
|
[37] |
肖存英, 胡雄, 王博等. 临近空间大气扰动变化特性的定量研究. 地球物理学报, 2016, 59: 1211-1221 (Xiao Cunying, Hu Xiong, Wang Bo, et al. Quantitative studies on the variations of near space atmospheric fluctuation. Chinese Journal of Geophysics, 2016, 59: 1211-1221 (in Chinese) doi: 10.6038/cjg20160404
|
[38] |
Wan T, Liu H, Fan J. Error band and confidence coefficient of atmospheric density models around altitude 100 km. Scientia Sinica: Physica, Mechanica & Astronomica, 2015, 45(12): 124706
|