Citation: | Wu Hua, Zou Shaohua, Xu Chenghui, Yu Yajun, Deng Zichen. Thermodynamic basis and transient response of generalized thermoelasticity. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(10): 2796-2807 doi: 10.6052/0459-1879-22-225 |
[1] |
Zhmakin AI. Heat conduction beyond the Fourier law. Technical Physics, 2021, 66(1): 1-22 doi: 10.1134/S1063784221010242
|
[2] |
李吉伟, 何天虎. 考虑应变率的广义压电热弹理论及其应用. 力学学报, 2020, 52(5): 1267-1276 (Li Jiwei, He Tianhu. A generalized piezoelectric-thermoelastic theory with strain rate and its application. Chinese Journal of Theoreticaland and Applied Mechanics, 2020, 52(5): 1267-1276 (in Chinese) doi: 10.6052/0459-1879-20-120
|
[3] |
李妍, 何天虎, 田晓耕. 超短激光脉冲加热薄板的广义热弹扩散问题. 力学学报, 2020, 52(5): 1255-1266 (Li Yan, He Tianhu, Tian Xiaogeng. A generalized thermoelastic diffusion problem of thin plate heated by the ultrashort laser pulses. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(5): 1255-1266 (in Chinese) doi: 10.6052/0459-1879-20-118
|
[4] |
张培, 何天虎. 考虑非局部效应和记忆依赖微分的广义热弹问题. 力学学报, 2018, 50(3): 508-516 (Zhang Pei, He Tianhu. A generalized thermoelastic problem with nonlocal effect and memory-dependent derivative. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(3): 508-516 (in Chinese) doi: 10.6052/0459-1879-18-079
|
[5] |
Li SN, Cao BY. Anomalous heat diffusion from fractional Fokker–Planck equation. Applied Mathematics Letters, 2020, 99: 105992 doi: 10.1016/j.aml.2019.07.023
|
[6] |
Yu YJ, Deng ZC. New insights on microscale transient thermoelastic responses for metals with electron-lattice coupling mechanism. European Journal of Mechanics-A/Solids, 2020, 80: 103887 doi: 10.1016/j.euromechsol.2019.103887
|
[7] |
Cattaneo C. A form of heat equation which eliminates the paradox of instantaneous propagation. Compete Rendus, 1958, 247: 431-433
|
[8] |
Vernotte P. Paradoxes in the continuous theory of the heat conduction. Compte Rendus, 1958, 246: 3154-3155
|
[9] |
Tzou DY. The generalized lagging response in small-scale and high-rate heating. International Journal of Heat and Mass Transfer, 1995, 38(17): 3231-3240
|
[10] |
Green AE, Naghdi PM. On undamped heat waves in an elastic solid. Journal of Thermal Stresses, 1992, 15(2): 253-264
|
[11] |
Green AE, Naghdi PM. Thermoelasticity without energy dissipation. Journal of Elasticity, 1993, 31(3): 189-208
|
[12] |
Quintanilla RXFN. Instability and non-existence in the nonlinear theory of thermoelasticity without energy dissipation. Continuum Mechanics and Thermodynamics, 2001, 13(2): 121-129
|
[13] |
Quintanilla R. Moore−Gibson−Thompson thermoelasticity. Mathematics and Mechanics of Solids, 2019, 24(12): 4020-4031 doi: 10.1177/1081286519862007
|
[14] |
Cao BY, Guo ZY. Equation of motion of a phonon gas and non-Fourier heat conduction. Journal of Applied Physics, 2007, 102(5): 053503 doi: 10.1063/1.2775215
|
[15] |
Kuang Z. Variational principles for generalized dynamical theory of thermopiezoelectricity. Acta Mechanica, 2009, 203(1-2): 1-11 doi: 10.1007/s00707-008-0039-1
|
[16] |
Lord HW, Shulman Y. A generalized dynamical theory of thermoelasticity. Journal of the Mechanics and Physics of Solids, 1967, 15(5): 299-309 doi: 10.1016/0022-5096(67)90024-5
|
[17] |
Bazarra N, Fernández JR, Quintanilla R. Lord−Shulman thermoelasticity with microtemperatures. Applied Mathematics & Optimization, 2021, 84(2): 1667-1685
|
[18] |
El-Karamany AS, Ezzat MA. On the phase−lag Green–Naghdi thermoelasticity theories. Applied Mathematical Modelling, 2016, 40(9-10): 5643-5659
|
[19] |
Alizadeh Hamidi B, Hosseini SA, Hassannejad R, et al. An exact solution on gold microbeam with thermoelastic damping via generalized Green-Naghdi and modified couple stress theories. Journal of Thermal Stresses, 2020, 43(2): 157-174 doi: 10.1080/01495739.2019.1666694
|
[20] |
Tzou DY. Experimental support for the lagging behavior in heat propagation. Journal of Thermophysics and Heat Transfer, 1995, 9(4): 686-693
|
[21] |
Tzou DY. Macro-to Microscale Heat Transfer: The Lagging Behavior. John Wiley & Sons, 2014: 388-391
|
[22] |
Singh B. Wave propagation in dual-phase-lag anisotropic thermoelasticity. Continuum Mechanics and Thermodynamics, 2013, 25(5): 675-683 doi: 10.1007/s00161-012-0261-x
|
[23] |
Quintanilla R. Moore-Gibson-Thompson thermoelasticity with two temperatures. Applications in Engineering Science, 2020, 1: 100006 doi: 10.1016/j.apples.2020.100006
|
[24] |
Youssef HM. A novel theory of generalized thermoelasticity based on thermomass motion and two-temperature heat conduction. Journal of Thermal Stresses, 2021, 44(2): 133-148 doi: 10.1080/01495739.2020.1838247
|
[25] |
Green AE, Lindsay KA. Thermoelasticity. Journal of Elasticity, 1972, 2(1): 1-7 doi: 10.1007/BF00045689
|
[26] |
Yu YJ, Xue ZN, Tian XG. A modified Green–Lindsay thermoelasticity with strain rate to eliminate the discontinuity. Meccanica, 2018, 53(10): 2543-2554 doi: 10.1007/s11012-018-0843-1
|
[27] |
Marin M, Craciun EM, Pop N. Some results in Green–Lindsay thermoelasticity of bodies with dipolar structure. Mathematics, 2020, 8(4): 497 doi: 10.3390/math8040497
|
[28] |
Yu YJ, Zhao LJ. Fractional thermoelasticity revisited with new definitions of fractional derivative. European Journal of Mechanics-A/Solids, 2020, 84: 104043 doi: 10.1016/j.euromechsol.2020.104043
|
[29] |
Yu YJ, Deng ZC. Fractional order theory of Cattaneo-type thermoelasticity using new fractional derivatives. Applied Mathematical Modelling, 2020, 87: 731-751 doi: 10.1016/j.apm.2020.06.023
|
[30] |
Yu YJ, Deng ZC. Fractional order thermoelasticity for piezoelectric materials. Fractals, 2021, 29(4): 2150082 doi: 10.1142/S0218348X21500821
|
[31] |
Yu YJ, Li SS, Deng ZC. Unified theory of 2n + 1 order size-dependent beams: Mathematical difficulty for functionally graded size-effect parameters solved. Applied Mathematical Modelling, 2020, 79: 314-340 doi: 10.1016/j.apm.2019.10.038
|
[32] |
Abouelregal AE. A novel model of nonlocal thermoelasticity with time derivatives of higher order. Mathematical Methods in the Applied Sciences, 2020, 43(11): 6746-6760 doi: 10.1002/mma.6416
|
[33] |
Yu YJ, Tian XG, Xiong QL. Nonlocal thermoelasticity based on nonlocal heat conduction and nonlocal elasticity. European Journal of Mechanics-A/Solids, 2016, 60: 238-253 doi: 10.1016/j.euromechsol.2016.08.004
|
[34] |
Machrafi H, Lebon G. General constitutive equations of heat transport at small length scales and high frequencies with extension to mass and electrical charge transport. Applied Mathematics Letters, 2016, 52: 30-37
|