EI、Scopus 收录
中文核心期刊
Zhang Wei, Xiao Weijian, Yuan Chuanniu, Zhang Ning, Liu Kun. Effect of particle size distribution on force chain evolution mechanism in iron powder compaction by discrete element method. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(9): 2489-2500. DOI: 10.6052/0459-1879-22-204
Citation: Zhang Wei, Xiao Weijian, Yuan Chuanniu, Zhang Ning, Liu Kun. Effect of particle size distribution on force chain evolution mechanism in iron powder compaction by discrete element method. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(9): 2489-2500. DOI: 10.6052/0459-1879-22-204

EFFECT OF PARTICLE SIZE DISTRIBUTION ON FORCE CHAIN EVOLUTION MECHANISM IN IRON POWDER COMPACTION BY DISCRETE ELEMENT METHOD

  • Received Date: May 12, 2022
  • Accepted Date: July 11, 2022
  • Available Online: July 12, 2022
  • In order to elucidate the influence of particle size distribution on the internal meso-mechanical behaviour of the iron powder compaction system, based on discrete element method (DEM), a compaction model was established by changing the particle size distribution of iron powder particles. Combined with the force chain extraction method, the influence mechanism of particle size distribution on the evolution of force chains was explored by analyzing the spatial distribution of force chains, the number of force chains, the length of force chains and the directionality of force chains. The findings reveal that the spatial distribution of force chains created by powders with varying particle sizes is different. The force chain distribution created is more concentrated the smaller the particle size distribution range is. On the other hand, the larger the size distribution range is, the more loose and uniform the force chain distribution is. The particle size distribution also has an effect on the number of force chains, which is manifested in that the total number of force chains gradually decreases with the increase of the particle size distribution range of the powder. The particle size distribution of the powder has a significant effect on the number of short force chains formed by the particles, but has a limited effect on the length of the force chain. With the increase of the particle size distribution range, the direction of the force chain is gradually concentrated from a uniform distribution to a specific angle direction, showing a certain anisotropy, and the formed cross force chain network structure is conducive to improving the degree of powder densification. This paper provides a basis for expanding the meso-mechanical theory of powder compaction from the influence of powder particle size distribution, and also provides guidance for further improving the powder densification behaviour by combining the powder particle size distribution and the evolution process of the internal force chain in the system.
  • [1]
    Bolzoni L, Yang F. Development of Cu-bearing powder metallurgy Ti alloys for biomedical applications. Joumal of the Mechanical Behavior of Biomedical Materials, 2019, 97: 41-48 doi: 10.1016/j.jmbbm.2019.05.014
    [2]
    Li X, Ye SL, Yuan XN, et al. Fabrication of biomedical Ti-24Nb-4Zr-8Sn alloy with high strength and low elastic modulus by powder metallurgy. Journal of Alloys and Compounds, 2018, 772: 968-977
    [3]
    Sethi G, Myers NS, German RM. An overview of dynamic compaction in powder metallurgy. International Materials Reviews, 2008, 53: 219-234 doi: 10.1179/174328008X309690
    [4]
    郭岩岩, 历长云, 冀国良等. 粉末致密化过程数值模拟研究现状. 材料导报, 2022, 18: 1-15

    Guo Yanyan, Li Changyun, Ji Guoliang, et al. Research status of numerical simulation of powder densification process. Materials Reports, 2022, 18: 1-15(in Chinese))
    [5]
    曾德麟. 粉末冶金材料. 北京: 冶金工业出版社, 1989

    Zeng Delin. Powder Metallurgical Material. Beijing: Metallurgical Industry Press, 1989 (in Chinese))
    [6]
    曲选辉. 粉末冶金原理与工艺. 北京: 冶金工业出版社, 2016

    Qu Xuanhui. Principle and Process of Powder Metallurgy. Beijing: Metallurgical Industry Press, 2016 (in Chinese))
    [7]
    黄辰阳, 陈嘉伟, 朱言言等. 激光定向能量沉积的粉末尺度多物理场数值模拟. 力学学报, 2021, 53 (12): 3240-3251 doi: 10.6052/0459-1879-21-420

    Huang Chenyang, Chen Jiawei, Zhu Yanyan, et al. Powder scale multiphysics numerical modelling of laser directed energy. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53 (12): 3240-3251(in Chinese)) doi: 10.6052/0459-1879-21-420
    [8]
    关新燕, 富庆飞, 刘虎等. Oldroyd-B黏弹性液滴碰撞过程的数值模拟. 力学学报, 2022, 54(3): 644-652 doi: 10.6052/0459-1879-22-020

    Guan Xinyan, Fu Qingfei, Liu Hu, et al. Numerical simulation of Oldroyd-B viscoelastic droplet collision. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(3): 644-652(in Chinese)) doi: 10.6052/0459-1879-22-020
    [9]
    李静. 计算机仿真在粉末冶金过程的应用及研究进展. 粉末冶金技术, 2021, 39 (4): 366-372 doi: 10.19591/j.cnki.cn11-1974/tf.2021060001

    Li Jing. Application and research progress of computer simulation used in powder metallurgy process. Powder Metallurgy Technology, 2021, 39(4): 366-372 (in Chinese) doi: 10.19591/j.cnki.cn11-1974/tf.2021060001
    [10]
    宓思恩, 刘小明, 魏悦广. 一种从离散模拟到连续介质弹性模拟的过渡方法. 力学学报, 2021, 53(11): 3080-3096 doi: 10.6052/0459-1879-21-449

    Mi Sien, Liu Xiaoming, Wei Yueguang. A transition method from discrete simulation to elastic FEA of continuous media. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(11): 3080-3096(in Chinese)) doi: 10.6052/0459-1879-21-449
    [11]
    孙其诚, 王光谦. 颗粒物质力学导论. 北京: 科学出版社, 2009

    Sun Qicheng, Wang Guangqian. Introduction to Mechanics of Granular Matter. Beijing: Science Press, 2009 (in Chinese))
    [12]
    张炜, 周剑, 于世伟等. 离散元法金属粉末高速压制过程中力链特性量化研究. 机械工程学报, 2018, 54(10): 85-92 doi: 10.3901/JME.2018.10.085

    Zhang Wei, Zhou Jian, Yu Shiwei, et al. Quantitative investigation on force chains of metal powder in high velocity compaction by using discrete element method. Journal of Mechanical Engineering, 2018, 54(10): 85-92(in Chinese)) doi: 10.3901/JME.2018.10.085
    [13]
    Meng FJ, Liu HB, Hua SE, et al. Force chain characteristics of dense particles sheared between parallel-plate friction system. Results in Physics, 2021, 25: 104328-104339 doi: 10.1016/j.rinp.2021.104328
    [14]
    Xu ZY, Meng FJ. Investigation of the flow and force chain characteristics of metal powder in high-velocity compaction based on a discrete element method. Journal of the Korean Physical Society, 2021, 79(5): 455-467 doi: 10.1007/s40042-021-00241-9
    [15]
    王海陆, 刘军, 林立等. 基于离散元的不同粒径配比粉末压制相对密度与力链分析. 粉末冶金技术, 2021, 39(6): 490-498 doi: 10.19591/j.cnki.cn11-1974/tf.2019120014

    Wang Hailu, Liu Jun, Lin Li, et al. Compacting relative density and force chain analysis of powders with different particle size ratios based on discrete element. Powder Metallurgy Technology, 2021, 39 (6): 490-498(in Chinese)) doi: 10.19591/j.cnki.cn11-1974/tf.2019120014
    [16]
    闫志巧, 陈峰, 蔡一湘. 不同粒径Ti粉的高速压制行为和烧结性能. 金属学报, 2012, 48(3): 379-384 doi: 10.3724/SP.J.1037.2011.00612

    Yan Zhiqiao, Chen Feng, Cai Yixiang. High velocity compaction behavior and sintered properties of Ti powders with different particle sizes. Acta Metallurgica Sinica, 2012, 48(3): 379-384(in Chinese)) doi: 10.3724/SP.J.1037.2011.00612
    [17]
    Skrinjar O, Larsson PL. On discrete element modelling of compaction of powders with size ratio. Computational Materials Science, 2004, 31: 131-146 doi: 10.1016/j.commatsci.2004.02.005
    [18]
    冯威, 栾道成, 王正云等. 成形压力与粉末粒径对钨铜复合材料烧结性能的影响. 粉末冶金材料科学与工程, 2007, 12(6): 354-358 doi: 10.3969/j.issn.1673-0224.2007.06.007

    Feng Wei, Luan Daocheng, Wang Zhengyun, et al. Influence of forming pressure and powder grain size on sintering properties of W-Cu composites. Materials Science and Engineering of Powder Metallurgy, 2007, 12(6): 354-358(in Chinese)) doi: 10.3969/j.issn.1673-0224.2007.06.007
    [19]
    孙海霞. 粉末高速钢的制备及组织性能的研究. [硕士论文]. 北京: 北京科技大学, 2021

    Sun Haixia. Study on the preparation, microstructure and performance of powder metallurgy high speed steel. [Master Thesis]. Beijing: University Of Science and Technology Beijing, 2021 (in Chinese))
    [20]
    Cundall PA, Strack ODL. A discrete numerical model for granular assemblies. Geotechnique, 1979, 29(1): 47-65 doi: 10.1680/geot.1979.29.1.47
    [21]
    Minneapolis M. Itasca Consulting Group. PFC2D (Particle flow code in 2 dimensions) (Version 3.1). USA: Itasca Consulting Group, 2004
    [22]
    黄培云. 粉末冶金原理. 北京: 冶金工业出版社, 2004

    Huang Peiyun. Principles of Powder Metallurgy. Beijing: Metallurgical Industry Press, 2004 (in Chinese))
    [23]
    刘国承, 秦训鹏, 魏青松. 单轴压缩金属粉末材料屈服准则研究. 华中科技大学学报(自然科学版), 2016, 44(7): 96-99 doi: 10.13245/j.hust.160719

    Liu Guocheng, Qin Xunpeng, Wei Qingsong. Study on yield criterion of powder metal under uniaxial compression. Journal of Huazhong University of Science and Technology(Natural Science Edition), 2016, 44(7): 96-99(in Chinese)) doi: 10.13245/j.hust.160719
    [24]
    张炜, 谈健君, 张帅等. 基于颗粒物质力学的铁粉末压制中摩擦特性对力链演化影响. 摩擦学学报, 2022, 42(2): 386-395

    Zhang Wei, Tan Jianjun, Zhang Shuai, et al. Influence of tribological characteristics on the evolution of force chains in ferrous powder compaction based on granular matter theory. Tribology, 2022, 42(2): 386-395(in Chinese))
    [25]
    韩伟, 王绍宗, 张倩等. 基于JKR接触模型的微米级颗粒离散元参数标定. 中国粉体技术, 2021, 27(6): 60-69 doi: 10.13732/j.issn.1008-5548.2021.06.007

    Han Wei, Wang Shaozong, Zhang Qian, et al. Discrete element parameter calibration of micron sized powder particles based on JKR contact model. China Powder Science and Technology, 2021, 27(6): 60-69(in Chinese)) doi: 10.13732/j.issn.1008-5548.2021.06.007
    [26]
    Marks B, Rognon P, Einav I. Grainsize dynamics of polydisperse granular segregation down inclined planes. Journal of Fluid Mechanics, 2012, 690: 499-511 doi: 10.1017/jfm.2011.454
    [27]
    胡久智. 黄培云双对数粉体压制方程的应用. 粉末冶金技术, 1987, 5(3): 137-146 doi: 10.19591/j.cnki.cn11-1974/tf.1987.03.002

    Hu Jiuzhi. Applications of Huang Peiyun's Double logarithmic equation of powder compacting. Powder Metallurgy Technology, 1987, 5(3): 137-146(in Chinese)) doi: 10.19591/j.cnki.cn11-1974/tf.1987.03.002
    [28]
    Peters JF, Muthuswamy M, Wibowo J, et al. Characterization of force chains in granular material. Physical Review E, 2005, 72(1): 1-8
    [29]
    孙其诚, 金峰, 王光谦等. 二维颗粒体系单轴压缩形成的力链结构. 物理学报, 2010, 59 (1): 30-37 doi: 10.7498/aps.59.30

    Sun Qicheng, Jin Feng, Wang Guangqian, et al. Force chains in a uniaxially compressed static granular matter in 2 D. Acta Physica Sinica, 2010, 59(1): 30-37(in Chinese)) doi: 10.7498/aps.59.30
    [30]
    Tordesillas A, Steer CAH, Walker DM. Force chain and contact cycle evolution in a dense granular material under shallow penetration. Nonlinear Processes in Geophysics, 2014, 21(2): 505-519 doi: 10.5194/npg-21-505-2014
  • Related Articles

    [1]Zhang Yi. NOETHER'S THEOREM OF HERGLOTZ FORM FOR GENERALIZED CHAPLYGIN SYSTEMS WITH NONCONSERVATIVE FORCES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(9): 2695-2702. DOI: 10.6052/0459-1879-24-150
    [2]Chen Jiahui, Wu Shiliang, Xiao Rui. PREPARATION AND APPLICATION OF BIOMASS-BASED LONG-CHAIN OXYGENATED FUELS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(12): 2768-2778. DOI: 10.6052/0459-1879-23-323
    [3]Wang Xiao, Chen Fanxiu, Wang Yuan, Liu Yuxin, Sun Jie. THE RESEARCH OF INTER-PARTICLE MECHANICAL BEHAVIOR IN THREE-DIMENSIONAL PARTICLE SYSTEM BY MICRO-CT[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(8): 1732-1741. DOI: 10.6052/0459-1879-23-161
    [4]Tang Xiaofeng, Feng Huanhuan, Pan Ming, Dong Yuhong. EFFECT OF ELECTROSTATIC FORCE ON SPATIAL DISTRIBUTION AND INTERPHASE ENERGY TRANSPORT IN RADIANT HEATED PARTICLE-LADEN TURBULENT CHANNEL FLOW[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(6): 1217-1227. DOI: 10.6052/0459-1879-23-163
    [5]Peng Kefeng, Zheng Zhijun, Zhou Fenghua, Yu Jilin. ELASTIC WAVE PROPAGATION CHARACTERISTICS OF DENSITY GRADIENT CYLINDRICAL SHELL CHAINS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(8): 2131-2139. DOI: 10.6052/0459-1879-22-019
    [6]Xu Zhaodong, Xu Chao, Xu Yeshou. MICROSCOPIC MOLECULAR CHAIN STRUCTURE MODEL OF VISCOELASTIC DAMPER UNDER MICRO-VIBRATION EXCITATIONS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3): 675-683. DOI: 10.6052/0459-1879-15-394
    [7]Yanqing Wu, Fenglei Huang. A powder compaction mechanical model for diffusion coupled with stress field[J]. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(4): 550-556. DOI: 10.6052/0459-1879-2008-4-2006-489
    [8]A CHAIN NETWORK MODEL SIMULATING MACRO MECHANICAL BEHAVIOR AND MICRO DAMAGE EVOLUTION OF Si 3N 4 CERAMICS[J]. Chinese Journal of Theoretical and Applied Mechanics, 1997, 29(2): 182-188. DOI: 10.6052/0459-1879-1997-2-1995-214
    [9]AGREEMENT OF THE INFINITE ELEMENT METHOD AND THE ANALYTICAL METHOD FOR CHAIN OF IDENTICAL SUBSTKUCTURES AND THE SOLUTION OF TRANSLATIVE MATRIX[J]. Chinese Journal of Theoretical and Applied Mechanics, 1995, 27(6): 719-723. DOI: 10.6052/0459-1879-1995-6-1995-488
    [10]THE EIGENVALUE PROBLEM OF THE CHAIN OF IDENTICALSUBSTRUCTURES AND THE EXPANSION METHODSOLUTION BASED ON THE EIGENVECTORS[J]. Chinese Journal of Theoretical and Applied Mechanics, 1991, 23(1): 72-81. DOI: 10.6052/0459-1879-1991-1-1995-811

Catalog

    Article Metrics

    Article views (749) PDF downloads (155) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return