EI、Scopus 收录
中文核心期刊
Volume 54 Issue 10
Oct.  2022
Turn off MathJax
Article Contents
Xu Wanhai, Ma Yexuan. Research progress on vortex-induced vibration of inclined cylindrical structures. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(10): 2641-2658 doi: 10.6052/0459-1879-22-186
Citation: Xu Wanhai, Ma Yexuan. Research progress on vortex-induced vibration of inclined cylindrical structures. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(10): 2641-2658 doi: 10.6052/0459-1879-22-186

RESEARCH PROGRESS ON VORTEX-INDUCED VIBRATION OF INCLINED CYLINDRICAL STRUCTURES

doi: 10.6052/0459-1879-22-186
  • Received Date: 2022-05-01
  • Accepted Date: 2022-06-28
  • Available Online: 2022-06-29
  • Publish Date: 2022-10-18
  • Vortex-induced vibration (VIV) of cylindrical structures is a very common phenomenon in daily life. Cylinder structures, such as pipelines in ocean engineering, high-rise buildings, stay cables in civil engineering and heat exchangers in nuclear engineering, etc. are frequently affected by vortex-induced vibrations, which can induce fatigue damage and make the failure of structures. At present, the VIV mechanism of cylindrical structures in vertical incoming flow has been comprehensively understood. However, when the cylinder structure is inclined in the flow field, the wake flow of the inclined cylinder is significantly different from that of the vertical one, and the fluid-structure interaction mechanism is more complex. Earlier, independence principle (IP) was proposed to simplify the problem of flow around an inclined stationary cylinder. In the assumption of the Independence Principle, the incoming flow velocity can be decomposed into one part that is vertical to the cylinder axis, and the other that is parallel to the cylinder axis. Only the velocity component vertical to the cylinder axis is considered and the influence of the velocity component parallel to the cylinder axis is ignored. In recent years, a large number of experimental and numerical studies have been carried out to investigate the VIV characteristics of an inclined cylinder and the applicability of Independence Principle. To deepen the understanding of the VIV characteristics and mechanisms of inclined cylinder, this paper summarizes and expounds the response characteristic, wake flow characteristic and hydrodynamic characteristic in “vortex-induced vibration of an inclined cylinder.”. The scope of the application of Independence Principle, the VIV mechanisms and VIV suppression of inclined cylindrical structures are discussed in depth, and the future research direction of this problem is prospected.

     

  • loading
  • [1]
    Griffin OM, Ramberg SE. Some recent studies of vortex shedding with application to marine tubulars and risers. Journal of Energy Resources Technology, 1982, 104: 2-13 doi: 10.1115/1.3230377
    [2]
    Bearman PW. Vortex shedding from oscillating bluff bodies. Annual Review of Fluid Mechanics, 1984, 16: 195-222 doi: 10.1146/annurev.fl.16.010184.001211
    [3]
    Sarpkaya T. A critical review of the intrinsic nature of vortex-induced vibrations. Journal of Fluids and Structures, 2004, 19: 389-447 doi: 10.1016/j.jfluidstructs.2004.02.005
    [4]
    Gabbai RD, Benaroya H. An overview of modeling and experiments of vortex-induced vibration of circular cylinders. Journal of Sound and Vibration, 2005, 282: 575-616 doi: 10.1016/j.jsv.2004.04.017
    [5]
    Williamson CHK, Govardhan R. A brief review of recent results in vortex-induced vibrations. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96: 713-735 doi: 10.1016/j.jweia.2007.06.019
    [6]
    Bearman PW. Circular cylinder wakes and vortex-induced vibrations. Journal of Fluids and Structures, 2011, 27: 648-658 doi: 10.1016/j.jfluidstructs.2011.03.021
    [7]
    Wu XD, Ge F, Hong YS. A review of recent studies on vortex-induced vibrations of long slender cylinders. Journal of Fluids and Structures, 2012, 28: 292-308 doi: 10.1016/j.jfluidstructs.2011.11.010
    [8]
    及春宁, 李非凡, 陈威霖等. 圆柱涡激振动研究进展与展望. 海洋技术学报, 2015, 34(1): 106-118 (Ji Chunning, Li Feifan, Chen Weilin, et al. Progress and prospect of the study on vortex-induced vibration of circular cylinders. Journal of Ocean Technology, 2015, 34(1): 106-118 (in Chinese)
    [9]
    陈伟民, 付一钦, 郭双喜等. 海洋柔性结构涡激振动的流固耦合机理和响应. 力学进展, 2017, 47: 25-91 (Cheng Weimin, Fu Yiqin, Guo Shuangxi, et al. Fluid-solid coupling and dynamic response of vortex-induced vibration of slender ocean cylinders. Advances in Mechanics, 2017, 47: 25-91 (in Chinese) doi: 10.6052/1000-0992-16-005
    [10]
    Liu GJ, Li HY, Qiu ZZ, et al. A mini review of recent progress on vortex-induced vibrations of marine risers. Ocean Engineering, 2020, 195: 106704 doi: 10.1016/j.oceaneng.2019.106704
    [11]
    Wang JS, Fan DX, Lin K. A review on flow-induced vibration of offshore circular cylinders. Journal of Hydrodynamics, 2020, 32: 415-440 doi: 10.1007/s42241-020-0032-2
    [12]
    Blevins RD. Flow-Induced Vibration. 2nd ed. Florida: Krieger Publishing Company, 1990
    [13]
    White FM. Fluid Mechanics. 5th ed. New York: McGraw Hill, 2005
    [14]
    Norberg C. Fluctuating lift on a circular cylinder: Review and new measurements. Journal of Fluids Structures, 2003, 17: 57-96 doi: 10.1016/S0889-9746(02)00099-3
    [15]
    Ji CN, Xiao Z, Wang YZ, et al. Numerical investigation on vortex-induced vibration of an elastically mounted circular cylinder at low Reynolds number using the fictitious domain method. International Journal of Computational Fluid Dynamics, 2011, 25: 207-221 doi: 10.1080/10618562.2011.577034
    [16]
    Khalak A, Williamson CHK. Motions, forces and mode transitions in vortex-vibrations at low mass-damping. Journal of Fluids and Structures, 1999, 13: 813-851 doi: 10.1006/jfls.1999.0236
    [17]
    Govardhan RN, Williamson CHK. Defining the ‘modified griffin plot’ in vortex-induced vibration: Revealing the effect of Reynolds number using controlled damping. Journal of Fluids Mechanics. 2006, 561: 147-180
    [18]
    Raghavan K, Bernitsas MM. Experimental investigation of Reynolds number effect on vortex induced vibration of rigid circular cylinder on elastic supports. Ocean Engineering, 2011, 38: 719-731 doi: 10.1016/j.oceaneng.2010.09.003
    [19]
    Blevins RD, Coughran CS. Experimental investigation of vortex- induced vibration in one and two dimensions with variable mass, damping, and Reynolds number. Journal of Fluids Engineering, 2009, 131: 101202 doi: 10.1115/1.3222904
    [20]
    Prasanth TK, Mittal S. Vortex-induced vibrations of a circular cylinder at low Reynolds numbers. Journal of Fluids Mechanics, 2007, 594: 463-491
    [21]
    Feng CC. The measurement of vortex-Induced effects on flow past stationary and oscillating circular D-section cylinders. [Master Thesis]. British Columbia: University of British Columbia, 1968
    [22]
    Khalak A, Williamson CHK. Dynamics of a hydro elastic cylinder with very low mass and damping. Journal of Fluids and Structures, 1996, 10: 455-472 doi: 10.1006/jfls.1996.0031
    [23]
    Govardhan R, Williamson CHK. Modes of vortex formation and frequency response of a freely vibrating cylinder. Journal of Fluids Mechanics, 2000, 420: 85-130 doi: 10.1017/S0022112000001233
    [24]
    潘志远, 崔维成, 刘应中. 低质量-阻尼因子圆柱体的涡激振动预报模型. 船舶力学, 2005, 9(5): 115-124 (Pan Zhiyuan, Cui Weicheng, Liu Yingzhong. A predicting model for self-excited VIV of a circular cylinder at low mass-damping. Journal of Ship Mechanics, 2005, 9(5): 115-124 (in Chinese) doi: 10.3969/j.issn.1007-7294.2005.05.014
    [25]
    Griffin OM. Vortex-excited cross-flow vibrations of a single cylindrical tube. Journal of Pressure Vessel Technology, 1980, 102: 158-166 doi: 10.1115/1.3263315
    [26]
    Skop RA, Balasubramanian S. A new twist on an old model for vortex-excited vibrations. Journal of Fluids and Structures, 1997, 11: 395-412 doi: 10.1006/jfls.1997.0085
    [27]
    Jauvtis N, Williamson CHK. The effect of two degrees of freedom on vortex-induced vibration at low mass and damping. Journal of Fluid Mechanics, 2004, 509: 23-62 doi: 10.1017/S0022112004008778
    [28]
    黄智勇, 潘志远, 崔维成. 两向自由度低质量比圆柱涡激振动的数值计算. 船舶力学, 2007, 11(1): 1-9 (Huang Zhiyong, Pan Zhiyuan, Cui Weicheng. Numerical simulation of VIV of a circular cylinder with two degrees of freedom and low mass-ratio. Journal of Ship Mechanics, 2007, 11(1): 1-9 (in Chinese) doi: 10.3969/j.issn.1007-7294.2007.01.001
    [29]
    Vikestad K, Vandiver JK, Larsen CM. Added mass and oscillation frequency for a circular cylinder subjected to vortex-induced vibrations and external disturbance. Journal of Fluids and Structures, 2000, 14: 1071-1088 doi: 10.1006/jfls.2000.0308
    [30]
    Branković M, Bearman PW. Measurements of transverse forces on circular cylinders undergoing vortex-induced vibration. Journal of Fluids and Structures, 2006, 22: 829-836 doi: 10.1016/j.jfluidstructs.2006.04.022
    [31]
    Gopalkrishnan R. Vortex-induced forces on oscillating bluff cylinders. [PhD Thesis]. Massachusetts: Woods Hole Oceanographic Institution, 1993
    [32]
    Aronsen KH. An experimental investigation of inline and combined in-line and cross-flow vortex induced vibrations. [PhD Thesis]. Trondheim: Norwegian University of Science and Technology, 2007
    [33]
    Bourguet R, Karniadakis G, Triantafyllou MS. Vortex-induced vibrations of a long flexible cylinder in shear flow. Journal of Fluids Mechanics, 2011, 677: 342-382 doi: 10.1017/jfm.2011.90
    [34]
    Vandiver JK, Jaiswal V, Jhingran V. Insights on vortex-induced, traveling waves on long risers. Journal of Fluids and Structures, 2009, 25: 641-653 doi: 10.1016/j.jfluidstructs.2008.11.005
    [35]
    Chaplin JR, Bearman PW, Huera-Huarte FJ, et al. Laboratory measurements of vortex-induced vibrations of a vertical tension riser in a stepped current. Journal of Fluids and Structures, 2005, 21: 3-24 doi: 10.1016/j.jfluidstructs.2005.04.010
    [36]
    Song JN, Lu L, Teng B, et al. Laboratory tests of vortex-induced vibrations of a long flexible riser pipe subjected to uniform flow. Ocean Engineering, 2011, 38: 1308-1322 doi: 10.1016/j.oceaneng.2011.05.020
    [37]
    Vandiver JK, Ma L, Rao Z. Revealing the effects of damping on the flow-induced vibration of flexible cylinders. Journal of Sound and Vibration, 2018, 433: 29-54 doi: 10.1016/j.jsv.2018.07.009
    [38]
    马烨璇, 宋志友, 徐万海. 基于能量传递规律的海洋立管涡激振动抑制研究. 力学学报, 2022, 54(4): 1-11 (Ma Yexuan, Song Zhiyou, Xu Wanhai. Study on vortex-induced vibration suppression of marine riser based on energy transfer. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(4): 1-11 (in Chinese) doi: 10.6052/0459-1879-21-664
    [39]
    Song LJ, Fu SX, Cao J, et al. An investigation into the hydrodynamics of a flexible riser undergoing vortex-induced vibration. Journal of Fluids and Structures, 2016, 63: 325-350 doi: 10.1016/j.jfluidstructs.2016.03.006
    [40]
    徐万海, 马烨璇, 罗浩等. 柔性圆柱涡激振动流体力系数识别及其特性. 力学学报, 2017, 49(4): 818-827 (Xu Wanhai, Ma Yexuan, Luo Hao, et al. Identification and characteristics of hydrodynamic coefficients for a flexible cylinder undergoing vortex-induced vibration. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(4): 818-827 (in Chinese) doi: 10.6052/0459-1879-16-263
    [41]
    徐万海, 马烨璇, 张书海等. 柔性圆柱涡激振动流体力系数识别方法. 中国海洋平台, 2019, 34(1): 1-8 (Xu Wanhai, Ma Yexuan, Zhang Shuhai, et al. Identification methods for hydrodynamic coefficients of flexible cylinder subject to vortex-induced vibration. China Offshore Platform, 2019, 34(1): 1-8 (in Chinese) doi: 10.3969/j.issn.1001-4500.2019.01.001
    [42]
    Wu J, Lie H, Larsen CM, et al. Vortex-induced vibration of a flexible cylinder: Interaction of the in-line and cross-flow responses. Journal of Fluids and Structures, 2016, 63: 238-258 doi: 10.1016/j.jfluidstructs.2016.03.001
    [43]
    Hoerner SF. Fluid-dynamic Drag: Practical Information on Aerodynamic Drag and Hydrodynamic Resistance. New Jersey: Midland Park, 1958
    [44]
    Friehe C, Schwarz W. Deviations from the cosine law for yawed cylindrical anemometer sensors. Journal of Applied Mechanics, 1968, 35: 655-662 doi: 10.1115/1.3601288
    [45]
    Hanson AR. Vortex shedding from yawed cylinders. AIAA Journal, 1966, 4(4): 738-740 doi: 10.2514/3.3531
    [46]
    Van Atta CW. Experiments on vortex shedding from yawed circular cylinders. AIAA Journal, 1968, 6: 931-933 doi: 10.2514/3.4630
    [47]
    Roshko A. On the development of turbulent wakes from vortex streets. [PhD Thesis]. California: California Institute of Technology Calif, 1952
    [48]
    Ramberg SE. The effects of yaw and finite length upon the vortex wakes of stationary and vibrating circular cylinders. Journal of Fluid Mechanics, 1983, 128: 81-107 doi: 10.1017/S0022112083000397
    [49]
    Surry D, Surry J. The Effect of Inclination on the Strouhal Number and Other Wake Properties of Circular Cylinders at Subcritical Reynolds Numbers. Toronto: University of Toronto, 1967
    [50]
    Thakur A, Liu X, Marshall JS. Wake flow of single and multiple yawed cylinders. Journal of Fluids Engineering, 2004, 126: 861-870 doi: 10.1115/1.1792276
    [51]
    Zhou T, Razali SFM, Zhou Y, et al. Dependence of the wake on inclination of a stationary cylinder. Experiments Fluids, 2009, 46: 1125-1138 doi: 10.1007/s00348-009-0625-6
    [52]
    Willden RHJ, Guerbi M. Vortex dynamics of stationary and oscillating cylinders in yawed flow//IUTAM Symposium on Bluff Body Wakes and Vortex-induced Vibration (BBVIV-6). Capri, 2010-6-22-25: 47-54
    [53]
    Zhao M, Cheng L, Zhou TM. Direct numerical simulation of three-dimensional flow past a yawed circular cylinder of infinite length. Journal of Fluids and Structures, 2009, 25: 831-847 doi: 10.1016/j.jfluidstructs.2009.02.004
    [54]
    Thapa J, Zhao M, Zhou T, et al. Three-dimensional simulation of vortex shedding flow in the wake of a yawed circular cylinder near a plane boundary at a Reynolds number of 500. Ocean Engineering, 2014, 87: 25-39 doi: 10.1016/j.oceaneng.2014.05.014
    [55]
    Liang H, Jiang SY, Duan RQ. Spanwise characteristics of flow crossing a yawed circular cylinder of finite length. Procedia Engineering, 2015, 126: 83-87 doi: 10.1016/j.proeng.2015.11.183
    [56]
    高洋洋, 张演明, 刘彩等. 不同雷诺数下倾斜圆柱绕流三维数值模拟研究. 海洋工程, 2020, 38(1): 86-100 (Gao Yangyang, Zhang Yanming, Liu Cai, et al. Three-dimensional numerical simulation on flow past an inclined circular cylinder at different Reynolds numbers. The Ocean Engineering, 2020, 38(1): 86-100 (in Chinese)
    [57]
    Griffin OM. A universal Strouhal number for the ‘locking-on’ of vortex shedding to the vibrations of bluff cylinders. Journal of Fluid Mechanics, 1978, 85: 591-606 doi: 10.1017/S0022112078000804
    [58]
    Griffin OM. Universal similarity in the wakes of stationary and vibrating bluff structures. Journal of Fluids Engineering, 1981, 103: 52-58 doi: 10.1115/1.3240780
    [59]
    Slaouti A, Gerrard JH. An experimental investigation of the end effects on the wake of a circular cylinder towed through water at low Reynolds numbers. Journal of Fluid Mechanics, 1981, 112: 297-314 doi: 10.1017/S0022112081000414
    [60]
    Gatto A, Ahmed NA, Archer RD. Investigation of upstream end effect on the flow characteristics of a yawed circular cylinders. The Aeronautical Journal, 2000, 104: 125-128
    [61]
    Jordan SA. Transition to turbulence in the separated shear layers of yawed circular cylinders. International Journal of Heat and Fluid Flow, 2010, 31: 489-498 doi: 10.1016/j.ijheatfluidflow.2010.04.009
    [62]
    Hogan JD, Hall JW. The spanwise dependence of vortex-shedding from yawed circular cylinders. Journal of Pressure Vessel Technology, 2010, 132: 031301 doi: 10.1115/1.4000732
    [63]
    Zhou T, Wang H, Razali SFM, et al. Three-dimensional vorticity measurements in the wake of a yawed circular cylinder. Physics of Fluids, 2010, 22: 015108
    [64]
    Zhao M, Thapa J, Cheng L, et al. Three-dimensional transition of vortex shedding flow around a circular cylinder at right and oblique attacks. Physics of Fluids, 2013, 25: 014105 doi: 10.1063/1.4788934
    [65]
    Najafi L, Firat E, Akilli H. Time-averaged near-wake of a yawed cylinder. Ocean Engineering, 2016, 113: 335-349 doi: 10.1016/j.oceaneng.2015.12.045
    [66]
    Matsuzaki K, Shingai M, Haramoto Y, et al. Visualization of three-dimensional flow structures in the wake of an inclined circular cylinder. Journal of Visualization, 2004, 7: 309-316 doi: 10.1007/BF03181535
    [67]
    Wang H, Razali SFM, Zhou T, et al. Streamwise evolution of an inclined cylinder wake. Experiment in Fluids, 2011, 51: 553-570 doi: 10.1007/s00348-011-1068-4
    [68]
    Wang R, Cheng S, Ting DSK. Effect of yaw angle on flow structure and cross-flow force around a circular cylinder. Physics of Fluids, 2019, 31: 014107 doi: 10.1063/1.5079750
    [69]
    Kawamura T, Hayashi T. Computation of flow around a yawed circular cylinder. Transactions of the Japan Society of Mechanical Engineers Series B, 1995, 37: 229-236
    [70]
    Shirakashi M, Hasegawa A, Wakiya S. Effect of the secondary flow on Karman vortex shedding from a yawed cylinder. Transactions of the Japan Society of Mechanical Engineers Series B, 1986, 51: 1124-1128
    [71]
    Marshall JS. Wake dynamics of a yawed cylinder. Journal of Fluids Engineering, 2003, 125: 97-103 doi: 10.1115/1.1523069
    [72]
    Dhanak MR. The stability of an expanding circular vortex layer. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1981, 375: 443-451
    [73]
    Dritschel DG. On the stabilization of a two-dimensional vortex strip by adverse shear. Journal of Fluids Mechanics, 1989, 206: 193-221 doi: 10.1017/S0022112089002284
    [74]
    Lessen M, Singh PJ, Paillet F. The instability of a trailing line vortex. Part 1. Inviscid theory. Journal of Fluids Mechanics, 1974, 63: 753-763 doi: 10.1017/S0022112074002175
    [75]
    Mayer EW, Powell KG. Viscous and inviscid instabilities of a trailing vortex. Journal of Fluids Mechanics, 1992, 245: 91-114 doi: 10.1017/S0022112092000363
    [76]
    Hayashi T, Kawamura T. Non-uniformity in a flow around a yawed circular cylinder. Flow Measurement and Instrumention, 1995, 6: 33-39 doi: 10.1016/0955-5986(95)93456-5
    [77]
    杜晓庆, 费陈杰, 况中华等. 展向剪切流作用下斜置圆柱气动特性研究. 振动与冲击, 2014, 33(21): 31-37 (Du Xiaoqing, Fei Chenjie, Kuang Zhonghua, et al. Aerodynamic characteristics of an inclined circular cylinder in a span-wise linear shear flow. Journal of Vibration and Shock, 2014, 33(21): 31-37 (in Chinese) doi: 10.13465/j.cnki.jvs.2014.21.006
    [78]
    汪冠亚. 斜置圆柱的试验方法和气动力特性试验. [博士论文]. 石家庄: 石家庄铁道大学, 2018

    Wang Guanya. Test method and experimental study on characteristics of aerodynamic of forces for a yawed circular cylinder. [PhD Thesis]. Shijiazhuang: Shijiazhuang Tiedao University, 2018 (in Chinese))
    [79]
    Yeo D, Jones NP. Aerodynamic forces induced by vertically oscillating incoming flow on a yawed horizontal circular cylinder. Journal of Wind Engineering and Industrial Aerodynamics, 2012, 104: 188-195
    [80]
    Shao WY, Zhang YP. Drag force on a free surface-piercing yawed circular cylinder in steady flow. Journal of Fluids and Structures, 2013, 43: 145-163 doi: 10.1016/j.jfluidstructs.2013.09.007
    [81]
    Vakil A, Green SI. Drag and lift coefficients of inclined finite circular cylinders at moderate Reynolds number. Computers & Fluids, 2009, 38: 1771-1781
    [82]
    Lucor D, Karniadakis GE. Effects of oblique inflow in vortex-induced vibrations. Flow, Turbulence and Combustion, 2003, 71: 375-389 doi: 10.1023/B:APPL.0000014929.90891.4d
    [83]
    Lam K, Lin YF, Zou L, et al. Investigation of turbulent flow past a yawed wavy cylinder. Journal of Fluids and Structures, 2010, 26: 1078-1097
    [84]
    Nakagawa K, Kishida K, Igarashi K. Vortex-induced oscillation and lift of yawed circular cylinders in cross-flow. Journal of Fluids and Structures, 1998, 12: 759-777 doi: 10.1006/jfls.1998.0157
    [85]
    Franzini GR, Fujarra ALC, Meneghini JR, et al. Experimental investigation of vortex-induced vibration on rigid, smooth and inclined cylinders. Journal of Fluids and Structures, 2009, 25: 742-750 doi: 10.1016/j.jfluidstructs.2009.01.003
    [86]
    Zhao M. The validity of the independence principle applied to the vortex-induced vibration of an inclined cylinder in steady flow. Applied Ocean Research, 2015, 53: 155-160 doi: 10.1016/j.apor.2015.08.005
    [87]
    Wu X, Jafari M, Sarkar P, et al. Verification of DES for flow over rigidly and elastically-mounted circular cylinders in normal and yawed flow. Journal of Fluids and Structures, 2020, 94: 102895 doi: 10.1016/j.jfluidstructs.2020.102895
    [88]
    Jain A, Modarres-Sadeghi Y. Vortex-induced vibrations of a flexibly-mounted inclined cylinder. Journal of Fluids and Structures, 2013, 43: 28-40 doi: 10.1016/j.jfluidstructs.2013.08.005
    [89]
    Jain A. Vortex-induced vibrations of an inclined cylinder in flow. [Master Thesis]. Massachusetts: University of Massachusetts Amherst, 2014
    [90]
    Franzini GR, Gonçalves RT, Meneghini JR, et al. One and two degrees-of-freedom vortex-induced vibration experiments with yawed cylinders. Journal of Fluids and Structures, 2013, 42: 401-420 doi: 10.1016/j.jfluidstructs.2013.07.006
    [91]
    Zang ZP, Zhou TM. Transverse vortex-induced vibration of a near-wall cylinder under oblique flows. Journal of Fluids and Structures, 2017, 68: 370-389 doi: 10.1016/j.jfluidstructs.2016.11.021
    [92]
    Esfahani VN, Hanson RE, Ekmekci A. Near-wake of a yaw-oscillating circular cylinder at subcritical flow. Journal of Fluids and Structures, 2022, 110: 103511 doi: 10.1016/j.jfluidstructs.2022.103511
    [93]
    邢国源. 倾斜流与剪切流中柔性立管涡激振动数值模拟. [硕士论文]. 天津: 天津大学, 2017

    Xing Guoyuan. Numerical simulations of vortex-induced vibration of flexible riser in oblique flow and shear flow. [Master Thesis]. Tianjin: Tianjin University, 2017 (in Chinese))
    [94]
    及春宁, 邢国源, 张力等. 倾斜来流作用下柔性立管涡激振动的数值模拟. 哈尔滨工程大学学报, 2018, 39(2): 324-331 (Ji Chunning, Xing Guoyuan, Zhang Li, et al. Numerical simulations of vortex-induced vibration of flexible riser subjected to inclined flow. Journal of Harbin Engineering University, 2018, 39(2): 324-331 (in Chinese)
    [95]
    Bourguet R, Karniadakis GE, Triantafyllou MS. On the validity of the independence principle applied to the vortex-induced vibrations of a flexible cylinder inclined at 60°. Journal of Fluids and Structures, 2015, 53: 58-69 doi: 10.1016/j.jfluidstructs.2014.09.005
    [96]
    Bourguet R, Triantafyllou MS. Vortex-induced vibrations of a flexible cylinder at large inclination angle. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 2015, 373: 20140108 doi: 10.1098/rsta.2014.0108
    [97]
    King R. Vortex excited oscillations of yawed circular cylinders. Journal of Fluids Engineering, 1977, 99: 495-501 doi: 10.1115/1.3448825
    [98]
    Hover FS, Miller SN, Triantafyllou MS. Vortex-induced oscillations in inclined cables. Journal of Wind Engineering, 1997, 69: 203-211
    [99]
    Jakobsen JB, Andersen TL, Macdonald JHG, et al. Wind-induced response and excitation characteristics of an inclined cable model in the critical Reynolds number range. Journal of Wind Engineering and Industrial Aerodynamics, 2012, 110: 100-112 doi: 10.1016/j.jweia.2012.04.025
    [100]
    徐万海, 马烨璇, 罗浩等. 小倾角倾斜柔性圆柱涡激振动实验研究. 哈尔滨工程大学学报, 2017, 38(2): 195-200 (Xu Wanhai, Ma Yexuan, Luo Hao, et al. Vortex-induced vibration of an inclined flexible cylinder with a small yaw angle. Journal of Harbin Engineering University, 2017, 38(2): 195-200 (in Chinese) doi: 10.11990/jheu.201511035
    [101]
    徐万海, 马烨璇, 杜杰等. 45°大倾角倾斜柔性圆柱涡激振动不相关原则实验验证. 振动与冲击, 2017, 36(7): 176-183 (Xu Wanhai, Ma Yexuan, Du Jie, et al. Test verification for independence principle applied in vortex-induced vibration of a flexible cylinder inclined at 45°. Journal of Vibration and Shock, 2017, 36(7): 176-183 (in Chinese) doi: 10.13465/j.cnki.jvs.2017.07.027
    [102]
    Seyed-Aghazadeh B, Modarres-Sadeghi Y. An experimental study to investigate the validity of the independence principle for vortex-induced vibration of a flexible cylinder over a range of angles of inclination. Journal of Fluids and Structures, 2018, 78: 343-355 doi: 10.1016/j.jfluidstructs.2018.01.004
    [103]
    Han QH, Ma YX, Xu WH, et al. Dynamic characteristics of an inclined flexible cylinder undergoing vortex-induced vibrations. Journal of Sound and Vibration, 2017, 394: 306-320 doi: 10.1016/j.jsv.2017.01.034
    [104]
    Xu WH, Ma YX, Ji CN, et al. Laboratory measurements of vortex-induced vibrations of a yawed flexible cylinder at different yaw angles. Ocean Engineering, 2018, 154: 27-42 doi: 10.1016/j.oceaneng.2018.01.113
    [105]
    Han QH, Ma YX, Xu WH, et al. Hydrodynamic characteristics of an inclined slender flexible cylinder subjected to vortex-induced vibration. International Journal of Mechanical Sciences, 2018, 148: 352-365 doi: 10.1016/j.ijmecsci.2018.09.010
    [106]
    Zhu H, Zhao H, Srinil N. Experimental investigation on vortex-induced vibration and solid-structure impact of a near-bottom horizontal flexible pipeline in oblique shear flow. Journal of Fluids and Structures, 2021, 106: 103356 doi: 10.1016/j.jfluidstructs.2021.103356
    [107]
    Zdravkovich MM. Review and classification of various aerodynamic and hydrodynamic means for suppressing vortex shedding. Journal of Wind Engineering and Industrial Aerodynamics, 1981, 7: 145-189 doi: 10.1016/0167-6105(81)90036-2
    [108]
    Zeinoddini M, Farhangmehr A, Seif MS, et al. Cross-flow vortex induced vibrations of inclined helically straked circular cylinders: An experimental study. Journal of Fluids and Structures, 2015, 59: 178-201 doi: 10.1016/j.jfluidstructs.2015.09.005
    [109]
    徐万海, 栾英森, 李志彪等. 倾斜柔性抑制圆柱的涡激振动特性. 天津大学学报(自然科学与工程技术版), 2017, 50(6): 637-642 (Xu Wanhai, Luan Yingsen, Li Zhibiao, et al. Vortex-induced vibrations of an inclined flexible straked cylinder. Journal of Tianjin University (Science and Technology), 2017, 50(6): 637-642 (in Chinese)
    [110]
    徐万海, 栾英森, 余杨等. 大倾角附螺旋列板倾斜圆柱涡激振动抑制分析. 工程力学, 2018, 35(1): 236-245 (Xu Wanhai, Luan Yingsen, Yu Yang, et al. Vortex-induced vibration suppression for inclined flexible straked cylinder at large inclination angle. Engineering Mechanics, 2018, 35(1): 236-245 (in Chinese) doi: 10.6052/j.issn.1000-4750.2016.09.0719
    [111]
    Xu WH, Luan YS, Han QH, et al. The effect of yaw angle on VIV suppression for an inclined flexible cylinder fitted with helical strakes. Applied Ocean Research, 2017, 67: 263-276 doi: 10.1016/j.apor.2017.07.014
    [112]
    Lu Y, Yu XL, Liao YY, et al. The influence of the yaw angle on the VIV fatigue damage of a yawed cylinder with or without helical strakes. Applied Ocean Research, 2020, 102: 102295 doi: 10.1016/j.apor.2020.102295
    [113]
    Xu WH, Luan YS, Liu LQ, et al. Influences of the helical strake cross-section shape on vortex-induced vibrations suppression for a long flexible cylinder. China Ocean Engineering, 2017, 31: 438-446 doi: 10.1007/s13344-017-0050-1
    [114]
    Xu WH, Qing WQ, He M, et al. Passive VIV reduction of an inclined flexible cylinder by means of helical strakes with round-section. China Ocean Engineering, 2018, 32: 413-421 doi: 10.1007/s13344-018-0043-8
    [115]
    Trim AD, Braaten H, Lie H, et al. Experimental investigation of vortex-induced vibration of long marine risers. Journal of Fluids and Structures, 2005, 21: 335-361 doi: 10.1016/j.jfluidstructs.2005.07.014
    [116]
    Wu H, Sun DP, Lu L, et al. Experimental investigation on the suppression of vortex-induced vibration of long flexible riser by multiple control rods. Journal of Fluids and Structures, 2012, 30: 115-132 doi: 10.1016/j.jfluidstructs.2012.02.004
    [117]
    Zhu HJ, Yao J. Numerical evaluation of passive control of VIV by small control rods. Applied Ocean Research, 2015, 51: 93-116 doi: 10.1016/j.apor.2015.03.003
    [118]
    徐万海, 杨猛, 芦燕. 控制杆对柔性圆柱涡激振动的抑制效果研究. 船舶力学, 2019, 23(2): 172-179 (Xu Wanhai, Yang Meng, Lu Yan. Investigation on the effectiveness of control rods in suppressing VIV of a flexible cylinder. Journal of Ship Mechanics, 2019, 23(2): 172-179 (in Chinese) doi: 10.3969/j.issn.1007-7294.2019.02.006
    [119]
    Lu Y, Liao YY, Liu B, et al. Cross-flow vortex-induced vibration reduction of a long flexible cylinder using 3 and 4 control rods with different configurations. Applied Ocean Research, 2019, 91: 101900 doi: 10.1016/j.apor.2019.101900
    [120]
    Lu Y, Liao YY, Xu WH. An investigation into the fatigue damage of a long flexible cylinder with multiple control rods in crossflow. Ocean Engineering, 2020, 202: 107175 doi: 10.1016/j.oceaneng.2020.107175
    [121]
    Xu WH, Qin WQ, Lu Y. Application of control rods for passively suppressing cross-flow VIV of an inclined flexible cylinder. Shock and Vibration, 2018, 2018: 8365726
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)

    Article Metrics

    Article views (526) PDF downloads(178) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return