EI、Scopus 收录
中文核心期刊
Wen Guilin, Liu Jie, Chen Zijie, Wei Peng, Long Kai, Wang Hongxin, Rong Jianhua, Xie Yimin. A survey of nonlinear continuum topology optimization methods. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(10): 2659-2675. DOI: 10.6052/0459-1879-22-179
Citation: Wen Guilin, Liu Jie, Chen Zijie, Wei Peng, Long Kai, Wang Hongxin, Rong Jianhua, Xie Yimin. A survey of nonlinear continuum topology optimization methods. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(10): 2659-2675. DOI: 10.6052/0459-1879-22-179

A SURVEY OF NONLINEAR CONTINUUM TOPOLOGY OPTIMIZATION METHODS

  • Received Date: April 25, 2022
  • Accepted Date: May 29, 2022
  • Available Online: May 30, 2022
  • The continuum topology optimization method can extensively improve the structural performance from the mechanical essence, which can provide designers with a variety of innovative design candidates. Due to these advantages and significant help to engineering, the continuum topology optimization method has been rapidly developed in recent years. This field has been developed relatively mature in dealing with linear topology optimization design problems. And it has been successfully applied to the high-performance design of all sorts of engineering structures. However, a large number of nonlinear issues are inherently involved in practical engineering. If they are assumed as linear problems, significant errors will often generate, and even wrong results may be obtained. This may ultimately lead to substantial engineering safety accidents. Under the demand-driven background of important engineering fields such as aerospace, mechanical engineering, marine engineering, high-speed trains, and architectural engineering, nonlinear continuum topology optimization methods have made remarkable progress in recent years. This paper aims to systematically review three types of nonlinear continuum topology optimization methods involving material nonlinearity, geometric nonlinearity, and boundary nonlinearity, with the typical methods comprehensively discussed and reviewed. Finally, the current difficulties (e.g., the poor numerical analysis accuracy, the low computational efficiency, limited to the field of statics, etc.) and future development directions (e.g., the large deformation and large strain problems, the nonlinear dynamic problems, the large-scale topology optimization design problems, etc.) of nonlinear continuum topology optimization methods are highlighted. This research review can provide a comprehensive knowledge sorting for beginners in the field of nonlinear continuum topology optimization. Moreover, it can also provide due help for scholars engaged in nonlinear continuum topology optimization methods.
  • [1]
    Sigmund O, Maute K. Topology optimization approaches. Structural and Multidisciplinary Optimization, 2013, 48(6): 1031-1055 doi: 10.1007/s00158-013-0978-6
    [2]
    Zhu BL, Zhang XM, Zhang HC, et al. Design of compliant mechanisms using continuum topology optimization: A review. Mechanism and Machine Theory, 2020, 143: 103622 doi: 10.1016/j.mechmachtheory.2019.103622
    [3]
    Deaton JD, Grandhi RV. A survey of structural and multidisciplinary continuum topology optimization: post 2000. Structural and Multidisciplinary Optimization, 2014, 49: 1-38 doi: 10.1007/s00158-013-0956-z
    [4]
    Zhu JH, Zhang WH, Xia L. Topology optimization in aircraft and aerospace structures design. Archives of Computational Methods in Engineering, 2016, 23(4): 595-622 doi: 10.1007/s11831-015-9151-2
    [5]
    Tian XJ, Sun XY, Liu GJ, et al. Optimization design of the jacket support structure for offshore wind turbine using topology optimization method. Ocean Engineering, 2022, 243: 110084 doi: 10.1016/j.oceaneng.2021.110084
    [6]
    Aage N, Andreassen E, Lazarov BS, et al. Giga-voxel computational morphogenesis for structural design. Nature, 2017, 550: 84-86 doi: 10.1038/nature23911
    [7]
    Liu J, Ou HF, He JF, et al. Topological design of a lightweight sandwich aircraft spoiler. Materials, 2019, 12(19): 3225 doi: 10.3390/ma12193225
    [8]
    Baandrup M, Sigmund O, Polk H, et al. Closing the gap towards super-long suspension bridges using computational morphogenesis. Nature Communications, 2020, 11: 2735 doi: 10.1038/s41467-020-16599-6
    [9]
    Luo Z, Yang JZ, Chen LP. A new procedure for aerodynamic missile designs using topological optimization approach of continuum structures. Aerospace Science and Technology, 2006, 10(5): 364-373 doi: 10.1016/j.ast.2005.12.006
    [10]
    Zhu JH, Gu XJ, Zhang WH, et al. Structural design of aircraft skin stretch-forming die using topology optimization. Journal of Computational and Applied Mathematics, 2013, 246: 278-288 doi: 10.1016/j.cam.2012.09.001
    [11]
    Tomlin M, Meyer J. Topology optimization of an additive layer manufactured (ALM) aerospace part//Proceeding of the 7th Altair CAE Technology Conference, 2011
    [12]
    Bendsøe MP, Kikuchi N. Generating optimal topologies in structural design using a homogenization method. Computer Methods in Applied Mechanics and Engineering, 1988, 71(2): 197-224 doi: 10.1016/0045-7825(88)90086-2
    [13]
    Sivapuram R, Dunning PD, Kim HA. Simultaneous material and structural optimization by multiscale topology optimization. Structural and Multidisciplinary Optimization, 2016, 54(5): 1267-1281 doi: 10.1007/s00158-016-1519-x
    [14]
    龙凯, 谷先广, 韩丹. 考虑泊松效应的材料/结构一体化设计方法. 复合材料学报, 2017, 34(6): 1252-1260 (Long Kai, Gu Xiangu, Han Dan. A concurrent design method for microstructures of materials and macrostructures by considering the Poisson effect. Acta Materiae Compositae Sinica, 2017, 34(6): 1252-1260 (in Chinese)
    [15]
    Jung T, Lee J, Nomura T, et al. Inverse design of three-dimensional fiber reinforced composites with spatially-varying fiber size and orientation using multiscale topology optimization. Composite Structures, 2022, 279: 114768 doi: 10.1016/j.compstruct.2021.114768
    [16]
    Bendsøe MP, Sigmund O. Material interpolation schemes in topology optimization. Archive of Applied Mechanics, 1999, 69(9-10): 635-654 doi: 10.1007/s004190050248
    [17]
    Zhou M, Rozvany GIN. The COC algorithm, part II: Topological, geometrical and generalized shape optimization. Computer Methods in Applied Mechanics and Engineering, 1991, 89(1-3): 309-336 doi: 10.1016/0045-7825(91)90046-9
    [18]
    Stolpe M, Svanberg K. An alternative interpolation scheme for minimum compliance topology optimization. Structural and Multidisciplinary Optimization, 2001, 22(2): 116-124 doi: 10.1007/s001580100129
    [19]
    Xie YM, Steven GP. A simple evolutionary procedure for structural optimization. Computers & Structures, 1993, 49(5): 885-896
    [20]
    Querin OM, Steven GP, Xie YM. Evolutionary structural optimisation (ESO) using a bidirectional algorithm. Engineering Computations, 1998, 15(8): 1031-1048 doi: 10.1108/02644409810244129
    [21]
    Huang X, Xie YM. Convergent and mesh-independent solutions for the bi-directional evolutionary structural optimization method. Finite Elements in Analysis and Design, 2007, 43(14): 1039-1049 doi: 10.1016/j.finel.2007.06.006
    [22]
    Wang MY, Wang XM, Guo DM. A level set method for structural topology optimization. Computer Methods in Applied Mechanics and Engineering, 2003, 192(1-2): 227-246 doi: 10.1016/S0045-7825(02)00559-5
    [23]
    Allaire G, Jouve F, Toader AM. Structural optimization using sensitivity analysis and a level-set method. Journal of Computational Physics, 2004, 194(1): 363-393 doi: 10.1016/j.jcp.2003.09.032
    [24]
    Wei P, Li ZY, Li XP, et al. An 88-line matlab code for the parameterized level set method based topology optimization using radial basis functions. Structural and Multidisciplinary Optimization, 2018, 58(2): 831-849 doi: 10.1007/s00158-018-1904-8
    [25]
    杨德庆, 刘正兴, 隋允康. 连续体结构拓扑优化设计的ICM方法. 上海交通大学学报, 1999, 33(6): 734-736 (Yang Deqing, Liu Zhengxing, Sui Yunkang. ICM method for topology optimization design of continuum structures. Journal of Shanghai Jiaotong University, 1999, 33(6): 734-736 (in Chinese) doi: 10.3321/j.issn:1006-2467.1999.06.027
    [26]
    叶红玲, 苏鹏飞, 王伟伟等. 疲劳寿命约束下的连续体结构拓扑优化. 北京工业大学学报, 2020, 46(3): 236-244 (Ye Hongling, Su Pengfei, Wang Weiwei et al. Continuum topology optimization with fatigue life constraint. Journal of Beijing University of Technology, 2020, 46(3): 236-244 (in Chinese)
    [27]
    Zhang WH, Zhou Y, Zhu JH. A comprehensive study of feature definitions with solids and voids for topology optimization. Computer Methods in Applied Mechanics and Engineering, 2017, 325: 289-313 doi: 10.1016/j.cma.2017.07.004
    [28]
    Jiu LP, Zhang WH, Meng L, et al. A CAD-oriented structural topology optimization method. Computers & Structures, 2020, 239: 106324
    [29]
    Wang MY, Zhou SW. Phase field: A variational method for structural topology optimization. Computer Modeling in Engineering & Sciences, 2004, 6(6): 547-566
    [30]
    Takaki T, Kato J. Phase-field topology optimization model that removes the curvature effects. Mechanical Engineering Journal, 2017, 4(2): 16-00462
    [31]
    Norato JA, Bendsøe MP, Haber RB, et al. A topological derivative method for topology optimization. Structural and Multidisciplinary Optimization, 2007, 33(4): 375-386
    [32]
    Guo X, Zhang WH, Zhong WL. Doing topology optimization explicitly and geometrically-a new moving morphable components based framework. Journal of Applied Mechanics, 2014, 81(8): 081009 doi: 10.1115/1.4027609
    [33]
    Zhang WS, Yuan J, Zhang J, et al. A new topology optimization approach based on moving morphable components (MMC) and the ersatz material model. Structural and Multidiplinary Optimization, 2016, 53(6): 1243-1260 doi: 10.1007/s00158-015-1372-3
    [34]
    Zhang WS, Chen JS, Zhu XF, et al. Explicit three dimensional topology optimization via moving morphable void (MMV) approach. Computer Methods in Applied Mechanics and Engineering, 2017, 322: 590-614 doi: 10.1016/j.cma.2017.05.002
    [35]
    Wang HX, Liu J, Wen GL. An adaptive mesh-adjustment strategy for continuum topology optimization to achieve manufacturable structural layout. International Journal for Numerical Methods in Engineering, 2019, 117(13): 1304-1322 doi: 10.1002/nme.6001
    [36]
    Wang HX, Liu J, Wen GL. An efficient evolutionary structural optimization method with smooth edges based on the game of building blocks. Engineering Optimization, 2019, 51(12): 2089-2108 doi: 10.1080/0305215X.2018.1562550
    [37]
    [38]
    Wei P, Wang WW, Yang Y, et al. Level set band method: A combination of density-based and level set methods for the topology optimization of continuums. Frontiers of Mechanical Engineering, 2020, 15(3): 390-405 doi: 10.1007/s11465-020-0588-0
    [39]
    Dbouk T. A review about the engineering design of optimal heat transfer systems using topology optimization. Applied Thermal Engineering, 2017, 112: 841-854 doi: 10.1016/j.applthermaleng.2016.10.134
    [40]
    Meng L, Zhang WH, Quan DL, et al. From topology optimization design to additive manufacturing: Today’s success and tomorrow’s roadmap. Archives of Computational Methods in Engineering, 2020, 27(3): 805-830 doi: 10.1007/s11831-019-09331-1
    [41]
    Zhang XP, Kang Z. Topology optimization of piezoelectric layers in plates with active vibration control. Journal of Intelligent Material Systems and Structures, 2014, 25(6): 697-712 doi: 10.1177/1045389X13500577
    [42]
    Ma M, Wang L. Non-probabilistic reliability-based robust design of micro-scale topology optimization (NRRD-MTO) for structural vibro-acoustic problem under harmonic excitation and natural frequency constraints. Structural and Multidisciplinary Optimization, 2022, 65: 3 doi: 10.1007/s00158-021-03122-8
    [43]
    Bai S, Kang Z. Robust topology optimization for structures under bounded random loads and material uncertainties. Computers & Structures, 2021, 252: 106569
    [44]
    Liu J, Wen GL, Xie YM. Layout optimization of continuum structures considering the probabilistic and fuzzy directional uncertainty of applied loads based on the cloud model. Structural and Multidisciplinary Optimization, 2016, 53(1): 81-100 doi: 10.1007/s00158-015-1334-9
    [45]
    Liu J, Wen GL, Zuo HZ, et al. A simple reliability-based topology optimization approach for continuum structures using a topology description function. Engineering Optimization, 2016, 48(7): 1182-1201 doi: 10.1080/0305215X.2015.1099640
    [46]
    Liu J, Wen GL, Qing QX, et al. An efficient method for topology optimization of continuum structures in the presence of uncertainty in loading direction. International Journal of Computational Methods, 2017, 14(5): 1750054 doi: 10.1142/S0219876217500542
    [47]
    Liu J, Wen GL, Huang XD. To avoid unpractical optimal design without support. Structural and Multidisciplinary Optimization, 2017, 56(6): 1589-1595 doi: 10.1007/s00158-017-1720-6
    [48]
    Liu J, Wen GL, Qing QX, et al. Robust topology optimization for continuum structures with random loads. Engineering Computations, 2018, 35(2): 710-732 doi: 10.1108/EC-10-2016-0369
    [49]
    Liu J, Wen GL. Continuum topology optimization considering uncertainties in load locations based on the cloud model. Engineering Optimization, 2018, 50(6): 1041-1060 doi: 10.1080/0305215X.2017.1361417
    [50]
    Xue L, Wen GL, Wang HX, et al. Eigenvectors-guided topology optimization to control the mode shape and suppress the vibration of the multi-material plate. Computer Methods in Applied Mechanics and Engineering, 2022, 391: 114560 doi: 10.1016/j.cma.2021.114560
    [51]
    Xia L, Breitkopf P. Recent advances on topology optimization of multiscale nonlinear structures. Archives of Computational Methods in Engineering, 2017, 24(2): 227-249 doi: 10.1007/s11831-016-9170-7
    [52]
    Maute K, Schwarz S, Ramm E. Adaptive topology optimization of elastoplastic structures. Structural Optimization, 1998, 15(2): 81-91 doi: 10.1007/BF01278493
    [53]
    Schwarz S, Maute K, Ramm E. Topology and shape optimization for elastoplastic structural response. Computer Methods in Applied Mechanics and Engineering, 2001, 190(15-17): 2135-2155 doi: 10.1016/S0045-7825(00)00227-9
    [54]
    Wallin M, Viktor J, Wingren E. Topology optimization based on finite strain plasticity. Structural and Multidisciplinary Optimization, 2016, 54(4): 783-793 doi: 10.1007/s00158-016-1435-0
    [55]
    Kato J, Hoshiba H, Takase S, et al. Analytical sensitivity in topology optimization for elastoplastic composites. Structural and Multidisciplinary Optimization, 2015, 52(3): 507-526 doi: 10.1007/s00158-015-1246-8
    [56]
    Li L, Khandelwal K. Design of fracture resistant energy absorbing structures using elastoplastic topology optimization. Structural and Multidisciplinary Optimization, 2017, 56(6): 1447-1475 doi: 10.1007/s00158-017-1735-z
    [57]
    Li L, Zhang GD, Khandelwal K. Design of energy dissipating elastoplastic structures under cyclic loads using topology optimization. Structural and Multidisciplinary Optimization, 2017, 56(2): 391-412 doi: 10.1007/s00158-017-1671-y
    [58]
    Blachowski B, Tauzowski P, Lógó J. Yield limited optimal topology design of elastoplastic structures. Structural and Multidisciplinary Optimization, 2020, 61: 1953-1976 doi: 10.1007/s00158-019-02447-9
    [59]
    Mayer RR, Kikuchi N, Scott RA. Application of topological optimization techniques to structural crashworthiness. International Journal for Numerical Methods in Engineering, 1996, 39(8): 1383-1403 doi: 10.1002/(SICI)1097-0207(19960430)39:8<1383::AID-NME909>3.0.CO;2-3
    [60]
    Patel NM, Kang BS, Renaud JE, et al. Crashworthiness design using topology optimization. Journal of Mechanical Design, 2009, 131(6): 061013 doi: 10.1115/1.3116256
    [61]
    Guimarães TA, Oliveira SAG, Duarte MA. Application of the topological optimization technique to the stents cells design for angioplasty. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2008, 30(3): 261-268 doi: 10.1590/S1678-58782008000300012
    [62]
    Lee HA, Park GJ. Topology optimization for structures with nonlinear behavior using the equivalent static loads method. Journal of Mechanical Design, 2012, 134(3): 031004 doi: 10.1115/1.4005600
    [63]
    Yoon GH, Kim YY. Topology optimization of material-nonlinear continuum structures by the element connectivity parameterization. International Journal for Numerical Methods in Engineering, 2007, 69(10): 2196-2218 doi: 10.1002/nme.1843
    [64]
    豆麟龙, 尹益辉, 张元章等. 弹塑性材料的结构拓扑优化. 机械强度, 2014, 36(6): 966-970 (Dou Linlong, Yin Yihui, Zhang Yuanzhang et al. Structural topology optimization of elasto-plastic material. Journal of Mechanical Strength, 2014, 36(6): 966-970 (in Chinese)
    [65]
    Luo QT, Tong LY. An algorithm for eradicating the effects of void elements on structural topology optimization for nonlinear compliance. Structural and Multidisciplinary Optimization, 2016, 53(4): 695-714 doi: 10.1007/s00158-015-1325-x
    [66]
    Kongwat S, Hasegawa H. Optimization on mechanical structure for material nonlinearity based on proportional topology method. Journal of Advanced Simulation in Science and Engineering, 2019, 6(2): 354-366 doi: 10.15748/jasse.6.354
    [67]
    Yuge K, Iwai N, Kikuchi N. Optimization of 2-D structures subjected to nonlinear deformations using the homogenization method. Structural and Multidisciplinary Optimization, 1999, 17(4): 286-299 doi: 10.1007/BF01207005
    [68]
    Bogomolny M, Amir O. Conceptual design of reinforced concrete structures using topology optimization with elastoplastic material modeling. International Journal for Numerical Methods in Engineering, 2012, 90(13): 1578-1597 doi: 10.1002/nme.4253
    [69]
    Li L, Zhang GD, Khandelwal K. Topology optimization of energy absorbing structures with maximum damage constraint. International Journal for Numerical Methods in Engineering, 2017, 112(7): 737-775 doi: 10.1002/nme.5531
    [70]
    Li L, Zhang GD, Khandelwal K. Failure resistant topology optimization of structures using nonlocal elastoplastic-damage model. Structural and Multidisciplinary Optimization, 2018, 58(4): 1589-1618 doi: 10.1007/s00158-018-1984-5
    [71]
    Zhao T, Ramos AS, Paulino GH. Material nonlinear topology optimization considering the von mises criterion through an asymptotic approach: max strain energy and max load factor formulations. International Journal for Numerical Methods in Engineering, 2019, 118(13): 804-828 doi: 10.1002/nme.6038
    [72]
    Xu B, Han YS, Zhao L. Bi-directional evolutionary stress-based topology optimization of material nonlinear structures. Structural and Multidisciplinary Optimization, 2021, 63(3): 1287-1305 doi: 10.1007/s00158-020-02757-3
    [73]
    Han YS, Xu B, Wang Q, et al. Topology optimization of material nonlinear continuum structures under stress constraints. Computer Methods in Applied Mechanics and Engineering, 2021, 378: 113731 doi: 10.1016/j.cma.2021.113731
    [74]
    Martins PALS, Jorge RMN, Ferreira AJM. A comparative study of several material models for prediction of hyperelastic properties: application to silicone-rubber and soft tissues. Strain, 2006, 42(3): 135-147 doi: 10.1111/j.1475-1305.2006.00257.x
    [75]
    Lee WS, Youn SK. Topology optimization of rubber isolators considering static and dynamic behaviours. Structural and Multidisciplinary Optimization, 2004, 27(4): 284-294 doi: 10.1007/s00158-004-0376-1
    [76]
    Ha SH, Cho S. Level set based topological shape optimization of geometrically nonlinear structures using unstructured mesh. Computers & Structures, 2008, 86(13-14): 1447-1455
    [77]
    Chen FF, Wang YQ, Wang MY, et al. Topology optimization of hyperelastic structures using a level set method. Journal of Computational Physics, 2017, 351(15): 437-454
    [78]
    Deng H, Cheng L, To AC. Distortion energy-based topology optimization design of hyperelastic materials. Structural and Multidisciplinary Optimization, 2019, 59(6): 1895-1913 doi: 10.1007/s00158-018-2161-6
    [79]
    Wang FW, Lazarov BS, Sigmund O, et al. Interpolation scheme for fictitious domain techniques and topology optimization of finite strain elastic problems. Computer Methods in Applied Mechanics and Engineering, 2014, 276: 453-472 doi: 10.1016/j.cma.2014.03.021
    [80]
    Ortigosa R, Martinez-Frutos J, Gil AJ, et al. A new stabilisation approach for level-set based topology optimisation of hyperelastic materials. Structural and Multidisciplinary Optimization, 2019, 60(6): 2343-2371 doi: 10.1007/s00158-019-02324-5
    [81]
    Ortigosa R, Ruiz D, Gil AJ, et al. A stabilisation approach for topology optimisation of hyperelastic structures with the SIMP method. Computer Methods in Applied Mechanics and Engineering, 2020, 364: 112924 doi: 10.1016/j.cma.2020.112924
    [82]
    薛日野, 杜宗亮, 郭旭. 基于移动可变形孔洞方法的超弹性结构拓扑优化. 计算力学学报, 2019, 36(4): 441-447 (Xue Riye, Du Zongliang, Guo Xu. Topology optimization of hyperelastic structures via Moving Morphable Void (MMV) approach. Chinese Journal of Computational Mechanic, 2019, 36(4): 441-447 (in Chinese) doi: 10.7511/jslx20180702001
    [83]
    Lahuerta RD, Simões ET, Campello EMB, et al. Towards the stabilization of the low density elements in topology optimization with large deformation. Computational Mechanics, 2013, 52(4): 779-797 doi: 10.1007/s00466-013-0843-x
    [84]
    James KA, Waisman H. Layout design of a bi-stable cardiovascular stent using topology optimization. Computer Methods in Applied Mechanics and Engineering, 2016, 305: 869-890 doi: 10.1016/j.cma.2016.02.036
    [85]
    Zhang YQ, Ge WJ, Zhang YH, et al. Topology optimization of hyperelastic structure based on a directly coupled finite element and element-free galerkin method. Advances in Engineering Software, 2018, 123: 25-37 doi: 10.1016/j.advengsoft.2018.05.006
    [86]
    Wallin M, Ivarsson N, Tortorelli D. Stiffness optimization of non-linear elastic structures. Computer Methods in Applied Mechanics and Engineering, 2018, 330: 292-307 doi: 10.1016/j.cma.2017.11.004
    [87]
    Luo YJ, Wang MY, Kang Z. Topology optimization of geometrically nonlinear structures based on an additive hyperelasticity technique. Computer Methods in Applied Mechanics and Engineering, 2015, 286: 422-441 doi: 10.1016/j.cma.2014.12.023
    [88]
    Chen Q, Zhang XM, Zhu BL. A 213-line topology optimization code for geometrically nonlinear structures. Structural and Multidisciplinary Optimization, 2019, 59(5): 1863-1879 doi: 10.1007/s00158-018-2138-5
    [89]
    Ye HL, Yuan BS, Li JC, et al. Geometrically nonlinear topology optimization of continuum structures based on an independent continuous mapping method. Acta Mechanica Solida Sinica, 2021, 34(5): 658-672 doi: 10.1007/s10338-021-00229-9
    [90]
    Chen ZJ, Wen GL, Wang HX, et al. Multi-resolution nonlinear topology optimization with enhanced computational efficiency and convergence. Acta Mechanica Sinica, 2022, 38: 421299 doi: 10.1007/s10409-021-09028-x
    [91]
    Capasso G, Morlier J, Charlotte M, et al. Stress-based topology optimization of compliant mechanisms using nonlinear mechanics. Mechanics and Industry, 2020, 21(3): 304 doi: 10.1051/meca/2020011
    [92]
    Zhang ZY, Zhao Y, Du B, et al. Topology optimization of hyperelastic structures using a modified evolutionary topology optimization method. Structural and Multidisciplinary Optimization, 2020, 62(6): 3071-3088 doi: 10.1007/s00158-020-02654-9
    [93]
    Bruns T, Tortorelli D. Topology optimization of geometrically nonlinear structures and compliant mechanisms//7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, St. Louis, Mo, USA, 1998
    [94]
    Bruns TE, Tortorelli DA. Topology optimization of non-linear elastic structures and compliant mechanisms. Computer Methods in Applied Mechanics and Engineering, 2001, 190(26-27): 3443-3459 doi: 10.1016/S0045-7825(00)00278-4
    [95]
    Klarbring A, Strömberg N. Topology optimization of hyperelastic bodies including non-zero prescribed displacements. Structural and Multidisciplinary Optimization, 2013, 47(1): 37-48 doi: 10.1007/s00158-012-0819-z
    [96]
    Geiss MJ, Boddeti N, Weeger O, et al. Combined level-set-XFEM- density topology optimization of 4D printed structures undergoing large deformation. Journal of Mechanical Design, 2019, 141(5): 051405 doi: 10.1115/1.4041945
    [97]
    Luo YJ, Li M, Kang Z. Topology optimization of hyperelastic structures with frictionless contact supports. International Journal of Solids and Structures, 2016, 81(1): 373-382
    [98]
    Chi H, Ramos DL, Ramos Jr AS, et al. On structural topology optimization considering material nonlinearity: plane strain versus plane stress solutions. Advances in Engineering Software, 2019, 131(10): 217-231
    [99]
    Buhl T, Pedersen CBW, Sigmund O. Stiffness design of geometrically nonlinear structures using topology optimization. Structural and Multidisciplinary Optimization, 2000, 19(2): 93-104 doi: 10.1007/s001580050089
    [100]
    Pedersen CBW, Buhl T, Sigmund O. Topology synthesis of large-displacement compliant mechanisms. International Journal for Numerical Methods in Engineering, 2001, 50(12): 2683-2705 doi: 10.1002/nme.148
    [101]
    李兆坤, 张宪民. 多输入多输出柔顺机构几何非线性拓扑优化. 机械工程学报, 2009, 45(1): 180-188 (Li Zhaokun, Zhang Xianmin. Topology optimization of multiple inputs and outputs compliant mechanisms with geometrically nonlinearity. Journal of Mechanical Engineering, 2009, 45(1): 180-188 (in Chinese) doi: 10.3901/JME.2009.01.180
    [102]
    Luo Z, Tong LY. A level set method for shape and topology optimization of large-displacement compliant mechanisms. International Journal for Numerical Methods in Engineering, 2008, 76(6): 862-892 doi: 10.1002/nme.2352
    [103]
    Jansen M, Lombaert G, Schevenels M. Robust topology optimization of structures with imperfect geometry based on geometric nonlinear analysis. Computer Methods in Applied Mechanics and Engineering, 2015, 285: 452-467 doi: 10.1016/j.cma.2014.11.028
    [104]
    Bruns TE, Tortorelli DA. An element removal and reintroduction strategy for the topology optimization of structures and compliant mechanisms. International Journal for Numerical Methods in Engineering, 2003, 57(10): 1413-1430 doi: 10.1002/nme.783
    [105]
    Cho S, Jung HS. Design sensitivity analysis and topology optimization of displacement-loaded non-linear structures. Computer Methods in Applied Mechanics and Engineering, 2003, 192(22-24): 2539-2553 doi: 10.1016/S0045-7825(03)00274-3
    [106]
    Cho S, Kwak J. Topology design optimization of geometrically non-linear structures using meshfree method. Computer Methods in Applied Mechanics and Engineering, 2006, 195(44-47): 5909-5925 doi: 10.1016/j.cma.2005.08.015
    [107]
    Du YX, Chen LP. Topology optimization for large-displacement compliant mechanisms using element free galerkin method. International Journal of CAD/CAM, 2009, 8(1): 1-10
    [108]
    Yamada T, Manabe M, Izui K, et al. A topology optimization method for geometrically nonlinear problems incorporating level set boundary expressions and a particle method. Journal of Advanced Mechanical Design Systems and Manufacturing, 2013, 7(4): 630-643 doi: 10.1299/jamdsm.7.630
    [109]
    He QZ, Kang Z, Wang YQ. A topology optimization method for geometrically nonlinear structures with meshless analysis and independent density field interpolation. Computational Mechanics, 2014, 54(3): 629-644 doi: 10.1007/s00466-014-1011-7
    [110]
    Huang X, Xie YM. Bidirectional evolutionary topology optimization for structures with geometrical and material nonlinearities. AIAA Journal, 2007, 45(1): 308-313 doi: 10.2514/1.25046
    [111]
    Huang X, Xie YM. Topology optimization of nonlinear structures under displacement loading. Engineering Structures, 2008, 30(7): 2057-2068 doi: 10.1016/j.engstruct.2008.01.009
    [112]
    Huang X, Xie YM. Evolutionary topology optimization of geometrically and materially nonlinear structures under prescribed design load. Structural Engineering and Mechanics, 2010, 34(5): 581-595 doi: 10.12989/sem.2010.34.5.581
    [113]
    Xu B, Han YS, Zhao, L. Bi-directional evolutionary topology optimization of geometrically nonlinear continuum structures with stress constraints. Applied Mathematical Modelling, 2020, 80: 771-791 doi: 10.1016/j.apm.2019.12.009
    [114]
    Han YS, Xu B, Duan ZY, et al. Controlling the maximum stress in structural stiffness topology optimization of geometrical and material nonlinear structures. Structural and Multidisciplinary Optimization, 2021, 64(6): 3971-3998 doi: 10.1007/s00158-021-03072-1
    [115]
    Hou J, Gu XJ, Zhu JH, et al. Topology optimization of joint load control with geometrical nonlinearity. Chinese Journal of Aeronautics, 2020, 33(1): 372-382 doi: 10.1016/j.cja.2019.01.024
    [116]
    Yoon GH, Kim YY. Element connectivity parameterization for topology optimization of geometrically nonlinear structures. International Journal of Solids and Structures, 2005, 42(7): 1983-2009 doi: 10.1016/j.ijsolstr.2004.09.005
    [117]
    Van Dijk NP, Yoon GH, Van Keulen F, et al. A level-set based topology optimization using the element connectivity parameterization method. Structural and Multidisciplinary Optimization, 2010, 42(2): 269-282 doi: 10.1007/s00158-010-0485-y
    [118]
    Yoon GH, Joung YS, Kim YY. Optimal layout design of three-dimensional geometrically non-linear structures using the element connectivity parameterization method. International Journal for Numerical Methods in Engineering, 2007, 69(6): 1278-1304 doi: 10.1002/nme.1808
    [119]
    Yoon GH. Maximizing the fundamental eigenfrequency of geometrically nonlinear structures by topology optimization based on element connectivity parameterization. Computers & Structures, 2010, 88(1-2): 120-133
    [120]
    Moon SJ, Yoon GH. A newly developed qp-relaxation method for element connectivity parameterization to achieve stress-based topology optimization for geometrically nonlinear structures. Computer Methods in Applied Mechanics and Engineering, 2013, 265(3): 226-241
    [121]
    Van Dijk NP, Langelaar M, Van Keulen F. Element deformation scaling for robust geometrically nonlinear analyses in topology optimization. Structural and Multidisciplinary Optimization, 2014, 50(4): 537-560 doi: 10.1007/s00158-014-1145-4
    [122]
    Saxena A. Topology design of large displacement compliant mechanisms with multiple materials and multiple output ports. Structural and Multidisciplinary Optimization, 2005, 30(6): 477-490 doi: 10.1007/s00158-005-0535-z
    [123]
    Cho S, Ha SH, Kim MG. Level set based shape optimization of geometrically nonlinear structures//IUTAM Symposium on Topological Design Optimization of Structures, Machines and Materials: Status and Perspectives, 2006, 137: 217-226
    [124]
    Kawamoto A. Stabilization of geometrically nonlinear topology optimization by the levenberg-marquardt method. Structural and Multidisciplinary Optimization, 2009, 37(4): 429-433 doi: 10.1007/s00158-008-0236-5
    [125]
    Lahuerta RD, Nigro PSB, Simões ET, et al. Design of compliant mechanism considering large deformation using topology optimization method//13th International Symposium on Multiscale, Multifunctional and Functionally Graded Materials, Sao Paulo, Brazil, 2014
    [126]
    Yoo KS, Han SY. Modified ant colony optimization for topology optimization of geometrically nonlinear structures. International Journal of Precision Engineering and Manufacturing, 2014, 15(4): 679-687 doi: 10.1007/s12541-014-0387-9
    [127]
    Gomes FAM, Senne TA. An algorithm for the topology optimization of geometrically nonlinear structures. International Journal for Numerical Methods in Engineering, 2014, 99(6): 391-409 doi: 10.1002/nme.4686
    [128]
    Lazarov BS, Schevenels M, Sigmund O. Robust design of large-displacement compliant mechanisms. Mechanical Sciences, 2011, 2(2): 175-182 doi: 10.5194/ms-2-175-2011
    [129]
    Zhu BL, Chen Q, Wang RX, et al. Structural topology optimization using a moving morphable component-based method considering geometrical nonlinearity. Journal of Mechanical Design, 2018, 140(8): 081403 doi: 10.1115/1.4040547
    [130]
    Silva GAd, Beck AT, Sigmund O. Topology optimization of compliant mechanisms with stress constraints and manufacturing error robustness. Computer Methods in Applied Mechanics and Engineering, 2019, 354: 397-421 doi: 10.1016/j.cma.2019.05.046
    [131]
    Zhu BL, Zhang XM, Li H, et al. An 89-line code for geometrically nonlinear topology optimization written in FreeFEM. Structural and Multidisciplinary Optimization, 2021, 63: 1015-1027 doi: 10.1007/s00158-020-02733-x
    [132]
    Chen Z, Long K, Wang X, et al. A new geometrically nonlinear topology optimization formulation for controlling maximum displacement. Engineering Optimization, 2021, 53(8): 1283-1297 doi: 10.1080/0305215X.2020.1781106
    [133]
    Liu LY, Xing J, Yang QW, et al. Design of large-displacement compliant mechanisms by topology optimization incorporating modified additive hyperelasticity technique. Mathematical Problems in Engineering, 2017, 2017: 4679746
    [134]
    Dunning PD. On the co-rotational method for geometrically nonlinear topology optimization. Structural and Multidisciplinary Optimization, 2020, 62(5): 2357-2374 doi: 10.1007/s00158-020-02605-4
    [135]
    Rong J, Rong X, Peng L, et al. A new method for optimizing the topology of hinge-free and fully decoupled compliant mechanisms with multiple inputs and multiple outputs. International Journal for Numerical Methods in Engineering, 2021, 122(12): 2863-2890 doi: 10.1002/nme.6644
    [136]
    Petersson J, Patriksson M. Topology optimization of sheets in contact by a subgradient method. International Journal for Numerical Methods in Engineering, 1997, 40(7): 1295-1321 doi: 10.1002/(SICI)1097-0207(19970415)40:7<1295::AID-NME115>3.0.CO;2-P
    [137]
    Mankame ND, Ananthasuresh GK. Topology optimization for synthesis of contact-aided compliant mechanisms using regularized contact modeling. Computers & Structures, 2004, 82(15-16): 1267-1290
    [138]
    Mankame ND, Ananthasuresh GK. Synthesis of contact-aided compliant mechanisms for non-smooth path generation. International Journal for Numerical Methods in Engineering, 2007, 69(12): 2564-2605 doi: 10.1002/nme.1861
    [139]
    Fancello EA. Topology optimization for minimum mass design considering local failure constraints and contact boundary conditions. Structural and Multidisciplinary Optimization, 2006, 32(3): 229-240 doi: 10.1007/s00158-006-0019-9
    [140]
    Peng JW, Xuan ZC. Topology optimization of continuum structures under contact constraints//International Conference on Mechanical Engineering and Mechanics, Wuxi, China, 2007
    [141]
    Desmorat B. Structural rigidity optimization with frictionless unilateral contact. International Journal of Solids and Structures, 2007, 44(3-4): 1132-1144 doi: 10.1016/j.ijsolstr.2006.06.010
    [142]
    Myśliński A. Level set method for optimization of contact problems. Engineering Analysis with Boundary Elements, 2008, 32(11): 986-994 doi: 10.1016/j.enganabound.2007.12.008
    [143]
    Myśliński A. Piecewise constant level set method for topology optimization of unilateral contact problems. Advances in Engineering Software, 2015, 80: 25-32 doi: 10.1016/j.advengsoft.2014.09.020
    [144]
    Strömberg N, Klarbring A. Topology optimization of structures in unilateral contact. Structural and Multidisciplinary Optimization, 2010, 41: 57-64 doi: 10.1007/s00158-009-0407-z
    [145]
    Strömberg N. Topology optimisation of bodies in unilateral contact by maximizing the potential energy//Eleventh International Conference on Computational Structures Technology, Stirlingshire, Scotland, 2012
    [146]
    Strömberg N. Topology optimization of structures with manufacturing and unilateral contact constraints by minimizing an adjustable compliance-volume product. Structural and Multidisciplinary Optimization, 2010, 42(3): 341-350 doi: 10.1007/s00158-010-0502-1
    [147]
    Yi SI, Lee HA, Park GJ. Optimization of a structure with contact conditions using equivalent loads. Journal of Mechanical Science and Technology, 2011, 25(3): 773-782 doi: 10.1007/s12206-011-0129-1
    [148]
    Lawry M, Maute K. Level set topology optimization of problems with sliding contact interfaces. Structural and Multidisciplinary Optimization, 2015, 52(6): 1107-1119 doi: 10.1007/s00158-015-1301-5
    [149]
    Lawry M, Maute K. Level set shape and topology optimization of finite strain bilateral contact problems. International Journal for Numerical Methods in Engineering, 2018, 113(8): 1340-1369 doi: 10.1002/nme.5582
    [150]
    Kumar P, Sauer RA, Saxena A. Synthesis of C0 path-generating contact-aided compliant mechanisms using the material mask overlay method. Journal of Mechanical Design, 2016, 138(6): 062301 doi: 10.1115/1.4033393
    [151]
    Kumar P, Saxena A, Sauer RA. Computational synthesis of large deformation compliant mechanisms undergoing self and mutual contact. Journal of Mechanical Design, 2019, 141(1): 012302 doi: 10.1115/1.4041054
    [152]
    Kanno Y. Exploiting lagrange duality for topology optimization with frictionless unilateral contact. Japan Journal of Industrial and Applied Mathematics, 2020, 37: 25-48 doi: 10.1007/s13160-019-00375-1
    [153]
    Niu C, Zhang WH, Gao T. Topology optimization of continuum structures for the uniformity of contact pressures. Structural and Multidisciplinary Optimization, 2019, 60: 185-210 doi: 10.1007/s00158-019-02208-8
    [154]
    Kristiansen H, Poulios K, Aage N. Topology optimization for compliance and contact pressure distribution in structural problems with friction. Computer Methods in Applied Mechanics and Engineering, 2020, 364: 112915 doi: 10.1016/j.cma.2020.112915
    [155]
    Ma YH, Chen XQ, Zuo WJ. Equivalent static displacements method for contact force optimization. Structural and Multidisciplinary Optimization, 2020, 62: 323-336 doi: 10.1007/s00158-020-02500-y
    [156]
    Fernandez F, Puso MA, Solberg J, et al. Topology optimization of multiple deformable bodies in contact with large deformations. Computer Methods in Applied Mechanics and Engineering, 2020, 371: 113288 doi: 10.1016/j.cma.2020.113288
    [157]
    Niu C, Zhang WH, Gao T. Topology optimization of elastic contact problems with friction using efficient adjoint sensitivity analysis with load increment reduction. Computers & Structures, 2020, 238: 106296
    [158]
    Zhang WH, Li JJ, Gao T. Topology optimization of elastic contact problems with maximum contact pressure constraint. Structural and Multidisciplinary Optimization, 2022, 65: 106 doi: 10.1007/s00158-022-03195-z
    [159]
    Luo YJ, Xing J, Kang Z. Topology optimization using material-field series expansion and Kriging-based algorithm: An effective non-gradient method. Computer Methods in Applied Mechanics and Engineering, 2020, 364: 112966 doi: 10.1016/j.cma.2020.112966
    [160]
    Luo YJ, Bao JW. A material-field series-expansion method for topology optimization of continuum structures. Computers & Structures, 2019, 225: 106122
    [161]
    Luo YJ, Li Y. Tunable band gap design of soft phononic crystals using topology optimization. Advanced Theory and Simulations, 2022, 5(7): 2100620 doi: 10.1002/adts.202100620
    [162]
    Guo D, Li Y, Zhao Q, et al. Stiffness modulation-driven transfer printing and strain isolation in stretchable electronics. Materials & Design, 2022, 217: 110602
    [163]
    Bao JW, Wang YG, Wang MQ, et al. Topological design of nonlinear permanent magnet synchronous machines based on material-field series-expansion. AIAA Journal, 2022, 60(4): 2668-2677 doi: 10.2514/1.J060839
    [164]
    梁宽, 付莉莉, 张晓鹏等. 基于材料场级数展开的结构动力学拓扑优化. 航空学报, 2022. , 2022. doi: 10.7527/S1000-6893.2021.26002 (in Chinese)
    [165]
    Wang L, Liu YR, Wang XJ, et al. Convexity-oriented reliability-based topology optimization (CRBTO) in the time domain using the equivalent static loads method. Aerospace Science and Technology, 2022, 123: 107490 doi: 10.1016/j.ast.2022.107490
    [166]
    Xia HJ, Qiu ZP, Liu Y. A stress-influence-function with adaptive strength feature approach for stress constrained continuum topology optimization via small-loop sequential strategy. International Journal for Numerical Methods in Engineering, 2022, 123(1): 41-68 doi: 10.1002/nme.6840
    [167]
    Liu DL, Qiu ZP. A subinterval dimension-wise method for robust topology optimization of structures with truss-like lattice material under unknown but bounded uncertainties. Structural and Multidisciplinary Optimization, 2021, 64(3): 1241-1258 doi: 10.1007/s00158-021-02911-5
    [168]
    Sun JL, Tian Q, Hu HY, et al. Topology optimization of a flexible multibody system with variable-length bodies described by ALE-ANCF. Nonlinear Dynamics, 2018, 93(2): 413-441 doi: 10.1007/s11071-018-4201-6
    [169]
    Sun JL, Tian Q, Hu HY. Topology optimization based on level set for a flexible multibody system modeled via ANCF. Structural and Multidisciplinary Optimization, 2017, 55(4): 1159-1177 doi: 10.1007/s00158-016-1558-3
    [170]
    Wang HX, Liu J, Wen GL. An efficient evolutionary structural optimization method for multi-resolution designs. Structural and Multidisciplinary Optimization, 2020, 62(2): 787-803 doi: 10.1007/s00158-020-02536-0
    [171]
    Wang HX, Liu J, Wen GL. An efficient multi-resolution topology optimization scheme for stiffness maximization and stress minimization. Engineering Optimization, 2022, 54(1): 40-60 doi: 10.1080/0305215X.2020.1853713
    [172]
    Liu C, Zhu YH, Sun Z, et al. An efficient moving morphable component (MMC)-based approach for multi-resolution topology optimization. Structural and Multidisciplinary Optimization, 2018, 58(6): 2455-2479 doi: 10.1007/s00158-018-2114-0
    [173]
    Nguyen TH, Paulino GH, Song J, et al. A computational paradigm for multiresolution topology optimization (MTOP). Structural and Multidisciplinary Optimization, 2010, 41(4): 525-539 doi: 10.1007/s00158-009-0443-8
    [174]
    黄孟成, 霍文栋, 刘畅等. 基于模板的子结构多分辨率拓扑优化. 力学进展, 2021, 51(4): 901-909 (Huang Mengcheng, Huo Wendong, Liu Chang et al. Substructuring multi-resolution topology optimization with template. Advances in Mechanics, 2021, 51(4): 901-909 (in Chinese) doi: 10.6052/1000-0992-21-030
    [175]
    Xue L, Liu J, Wen GL, et al. Efficient, high-resolution topology optimization method based on convolutional neural networks. Frontiers of Mechanical Engineering, 2021, 16(1): 80-96 doi: 10.1007/s11465-020-0614-2
    [176]
    Mukherjee S, Lu DC, Raghavan B, et al. Accelerating large-scale topology optimization: State-of-the-art and challenges. Archives of Computational Methods in Engineering, 2021, 28(7): 4549-4571 doi: 10.1007/s11831-021-09544-3
    [177]
    Lei X, Liu C, Du ZL, et al. Machine learning-driven real-time topology optimization under moving morphable component-based framework. Journal of Applied Mechanics, 2019, 86(1): 011004 doi: 10.1115/1.4041319
    [178]
    Deng CY, Wang YZ, Qin C, et al. Self-directed online machine learning for topology optimization. Nature Communications, 2022, 13(1): 388 doi: 10.1038/s41467-021-27713-7
  • Related Articles

    [1]Huang Bin, He Zhiyun, Zhang Heng. HYBRID PERTURBATION-GALERKIN METHOD FOR GEOMETRICAL NONLINEAR ANALYSIS OF TRUSS STRUCTURES WITH RANDOM PARAMETERS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(5): 1424-1436. DOI: 10.6052/0459-1879-19-099
    [2]Xingtian Liu, Shuhai Chen, Jiadeng Wang, Junfeng Shen. ANLYSIS OF THE DYNAMIC BEHAVIOR AND PERFORMANCE OF A VIBRATION ISOLATION SYSTEM WITH GEOMETRIC NONLINEAR FRICTION DAMPING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 371-379. DOI: 10.6052/0459-1879-18-302
    [3]Song Yanqi, Zhou Tao. THREE-DIMENSIONAL GEOMETRIC NONLINEARITY ELEMENT-FREE METHOD BASED ON S-R DECOMPOSITION THEOREM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(4): 853-862. DOI: 10.6052/0459-1879-18-050
    [4]Wang Gang, Qi Zhaohui, Wang Jing. SUBSTRUCTURE METHODS OF GEOMETRIC NONLINEAR ANALYSIS FOR MEMBER STRUCTURES WITH HINGED SUPPORTS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(2): 273-283. DOI: 10.6052/0459-1879-13-345
    [5]Yijiang Peng, Yinghua Liu. Application of the base forces concept in geometrically nonlinear finite element method on complementary energy[J]. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(4): 496-501. DOI: 10.6052/0459-1879-2008-4-2007-340
    [6]Bin Huang, Jianchen Suo, Wenjun Huang. Geometrical nonlinear analysis of truss structures with random parameters utilizing recursive stochastic finite element method[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 39(6): 835-842. DOI: 10.6052/0459-1879-2007-6-2007-165
    [7]Kun Xu, Xiwu Xu. Nonlinear numerical analysis of progressive damage of 3D braided composites[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 39(3): 398-407. DOI: 10.6052/0459-1879-2007-3-2006-450
    [8]TWO-NODE CURVED ELEMENT METHOD FOR GEOMETRICALLY NONLINEAR ANALYSIS OF TENSION STRUCTURES[J]. Chinese Journal of Theoretical and Applied Mechanics, 1999, 31(5): 633-639. DOI: 10.6052/0459-1879-1999-5-1995-075
    [9]A HIGHER ORDER NONLINEAR FEM FOR RC PLATES[J]. Chinese Journal of Theoretical and Applied Mechanics, 1998, 30(3): 379-384. DOI: 10.6052/0459-1879-1998-3-1995-140
    [10]GEOMETRICALLY NONLINEAR ANALYSES FOR 2-D PROBLEMS BASED ON THE INCOMPATIBLE FINITE ELEMENTS WITH INTERNAL PARAMETERS[J]. Chinese Journal of Theoretical and Applied Mechanics, 1993, 25(4): 505-513. DOI: 10.6052/0459-1879-1993-4-1995-673
  • Cited by

    Periodical cited type(11)

    1. 曹元波,单小鹏. 发动机悬置支架拓扑优化设计探究. 汽车实用技术. 2024(13): 56-59+78 .
    2. 刘世明,黄如妍,孙宝珊,巴松涛,李晓克. 基于双向渐进结构优化算法的预制拼装箱梁剪力键设计研究. 世界桥梁. 2024(04): 77-84 .
    3. 周焕林,郭鑫,王选,方立雪,龙凯. 考虑几何非线性的多相多孔结构拓扑优化设计. 吉林大学学报(工学版). 2024(10): 2754-2763 .
    4. 陈小前,赵勇,霍森林,张泽雨,都柄晓. 多尺度结构拓扑优化设计方法综述. 航空学报. 2023(15): 25-60 .
    5. 张玉柱,刘利强. 大吨位履带式起重机臂头的拓扑优化设计. 中国机械. 2023(11): 17-21 .
    6. 刘杰,李志勇,何俊峰,文桂林,王洪鑫,田阳. TMP折纸防护的双稳态软体机器人. 力学学报. 2023(10): 2331-2343 . 本站查看
    7. 赵皓. 基于归一化高斯网络的同步磁阻电机拓扑优化. 河南科技. 2023(20): 12-16 .
    8. 杜鼎新,王栋. 载荷方向不确定条件下结构动态稳健性拓扑优化设计. 力学学报. 2023(11): 2588-2598 . 本站查看
    9. 段洪斌,张斌,王希,吴东栋. 核电站燃料水池清洗机器人框架拓扑优化设计. 设备管理与维修. 2023(21): 155-158 .
    10. 张金阳,何云峰,史玉锋,向瑞,禹顺安,石占魁. 基于ANSYS的新能源汽车转向万向节拓扑优化设计. 农业装备与车辆工程. 2023(12): 152-156 .
    11. 伍勇,马炳杰,王舒楠. 某V型高速船用柴油机油底壳结构轻量化设计. 船舶工程. 2023(10): 36-42 .

    Other cited types(14)

Catalog

    Article Metrics

    Article views (2084) PDF downloads (687) Cited by(25)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return