Citation: | Gu Wei, Liu Cheng, An Zhipeng, Shi Donghua. An unconditionally stable dynamical integration algorithm based on Hamel’s formalism. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(9): 2577-2587. DOI: 10.6052/0459-1879-22-131 |
[1] |
Newmark NM. A method of computation for structural dynamics. Journal of the Engineering Mechanics Division, 1959, 85(3): 67-94 doi: 10.1061/JMCEA3.0000098
|
[2] |
Chung J, Hulbert G. A time integration algorithm for structural dynamics with improved numerical dissipation: The generalized-α method. ASME Journal of Applied Mechanics, 1993, 60: 371-375
|
[3] |
Wood WL, Bossak M, Zienkiewicz OC. An alpha modification of Newmark's method. International Journal for Numerical Methods in Engineering, 1980, 15(10): 1562-1566 doi: 10.1002/nme.1620151011
|
[4] |
Hilber HM, Hughes TJR, Taylor RL. Improved numerical dissipation for time integration algorithms in structural dynamics. Earthquake Engineering and Structural Dynamics, 1977, 5(3): 283-292 doi: 10.1002/eqe.4290050306
|
[5] |
Bazilevs Y, Calo VM, Cottrell JA, et al. Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows. Computer Methods in Applied Mechanics and Engineering, 2007, 197(1-4): 173-201 doi: 10.1016/j.cma.2007.07.016
|
[6] |
Behnoudfar P, Calo VM, Deng Q, et al. A variationally separable splitting for the generalized-α method for parabolic equations. International Journal for Numerical Methods in Engineering, 2020, 121(5): 828-841 doi: 10.1002/nme.6246
|
[7] |
Gomez H, Hughes TJR, Nogueira X, et al. Isogeometric analysis of the isothermal Navier–Stokes–Korteweg equations. Computer Methods in Applied Mechanics and Engineering, 2010, 199(25-28): 1828-1840 doi: 10.1016/j.cma.2010.02.010
|
[8] |
Behnoudfar P, Deng Q, Calo VM. Higher-order generalized-α methods for hyperbolic problems. Computer Methods in Applied Mechanics and Engineering, 2021, 378: 113725 doi: 10.1016/j.cma.2021.113725
|
[9] |
Yen J, Petzold L, Raha S. A time integration algorithm for flexible mechanism dynamics: The DAE α-method. Computer Methods in Applied Mechanics and Engineering, 1998, 158(3-4): 341-355 doi: 10.1016/S0045-7825(97)00261-2
|
[10] |
Arnold M, Brüls O. Convergence of the generalized-α scheme for constrained mechanical systems. Multibody System Dynamics, 2007, 18(2): 185-202 doi: 10.1007/s11044-007-9084-0
|
[11] |
张雄, 王天书. 计算动力学. 北京: 清华大学出版社, 2007
Zhang Xiong, Wang Tianshu. Computational Dynamics. Beijing: Tsinghua University Press, 2007: 236-273 (in Chinese))
|
[12] |
田强. 基于绝对节点坐标方法的柔性多体系统动力学研究与应用. [博士论文]. 武汉: 华中科技大学, 2009
Tian Qiang. Flexible multibody dynamics research and application based on the absolute nodal coordinate method. [PhD Thesis]. Wuhan: Huazhong University of Science and Technology, 2009 (in Chinese))
|
[13] |
Behnoudfar P, Deng Q, Calo VM. High-order generalized-α method. Applications in Engineering Science, 2020, 4: 100021 doi: 10.1016/j.apples.2020.100021
|
[14] |
Ji Y, Xing Y, Wiercigroch M. An unconditionally stable time integration method with controllable dissipation for second-order nonlinear dynamics. Nonlinear Dynamics, 2021, 105(4): 3341-3358
|
[15] |
季奕, 邢誉峰. 一种求解瞬态热传导方程的无条件稳定方法. 力学学报, 2021, 53(7): 1951-1961. (Ji Yi, , Xing Yufeng. An unconditionally stable method for transient heat conduction. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(7): 1951-1961(in Chinese)) doi: 10.1007/s11071-021-06720-9
Ji Y, Xing Y, Wiercigroch M. An unconditionally stable time integration method with controllable dissipation for second-order nonlinear dynamics[J]. Nonlinear Dynamics, 2021, 105(4): 3341-3358. (in Chinese) doi: 10.1007/s11071-021-06720-9
|
[16] |
Brüls O, Cardona A, Arnold M. Lie group generalized-α time integration of constrained flexible multibody systems. Mechanism and Machine Theory, 2012, 48: 121-137 doi: 10.1016/j.mechmachtheory.2011.07.017
|
[17] |
Arnold M, Brüls O, Cardona A. Error analysis of generalized-α Lie group time integration methods for constrained mechanical systems. Numerische Mathematik, 2015, 129(1): 149-179 doi: 10.1007/s00211-014-0633-1
|
[18] |
刘铖, 胡海岩. 基于李群局部标架的多柔体系统动力学建模与计算. 力学学报, 2021, 53(1): 213-233
Liu Cheng, Hu Haiyan. Dynamic modeling and computation for flexible multibody systems based on the local frame of Lie group. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(1): 213-233(in Chinese))
|
[19] |
Wieloch V, Arnold M. BDF integrators for constrained mechanical systems on Lie groups. Journal of Computational and Applied Mathematics, 2021, 387: 112517 doi: 10.1016/j.cam.2019.112517
|
[20] |
Marsden JE, West M. Discrete mechanics and variational integrators. Acta Numerica, 2001, 10: 357-514 doi: 10.1017/S096249290100006X
|
[21] |
Lew A, Marsden JE, Ortiz M, et al. An overview of variational integrators. In: Finite Element Methods: 1970s and Beyond, CIMNE Barcelona, 2004: 85-146
|
[22] |
Wendlandt JM, Marsden JE. Mechanical integrators derived from a discrete variational principle. Physica D:Nonlinear Phenomena, 1997, 106(3-4): 223-246 doi: 10.1016/S0167-2789(97)00051-1
|
[23] |
Leyendecker S, Ober-Blöbaum S, Marsden JE, et al. Discrete mechanics and optimal control for constrained systems. Optimal Control Applications and Methods, 2010, 31(6): 505-528 doi: 10.1002/oca.912
|
[24] |
Kane C, Marsden JE, Ortiz M. Symplectic-energy-momentum preserving variational integrators. Journal of Mathematical Physics, 1999, 40(7): 3353-3371 doi: 10.1063/1.532892
|
[25] |
Cendra H, Marsden JE, Ratiu TS. Geometric Mechanics, Lagrangian Reduction, and Nonholonomic Systems//Mathematics Unlimited—2001 and Beyond. Berlin, Heidelberg: Springer, 2001: 221-273
|
[26] |
Hante S, Arnold M. RATTLie: A variational Lie group integration scheme for constrained mechanical systems. Journal of Computational and Applied Mathematics, 2021, 387: 112492 doi: 10.1016/j.cam.2019.112492
|
[27] |
Ober-Blöbaum S, Vermeeren M. Superconvergence of Galerkin variational integrators. IFAC-Papers on Line, 2021, 54(19): 327-333 doi: 10.1016/j.ifacol.2021.11.098
|
[28] |
Yi Z, Yue B, Deng M. Chebyshev spectral variational integrator and applications. Applied Mathematics and Mechanics, 2020, 41(5): 753-768 doi: 10.1007/s10483-020-2602-8
|
[29] |
Bloch AM, Marsden JE, Zenkov DV. Quasivelocities and symmetries in non-holonomic systems. Dynamical Systems, 2009, 24(2): 187-222 doi: 10.1080/14689360802609344
|
[30] |
Ball KR, Zenkov DV. Hamel’s formalism and variational integrators. Fields Institute Communications, 2015, 73: 477-506
|
[31] |
An Z, Wu H, Shi D. Minimum-time optimal control of robotic manipulators based on Hamel’s integrators. Meccanica, 2019, 54(15): 2521-2537 doi: 10.1007/s11012-019-01093-1
|
[32] |
Shi D, Berchenko-Kogan Y, Zenkov DV, et al. Hamel’s formalism for infinite-dimensional mechanical systems. Journal of Nonlinear Science, 2017, 27(1): 241-283 doi: 10.1007/s00332-016-9332-7
|
[33] |
An Z, Gao S, Shi D, et al. A variational integrator for the Chaplygin–Timoshenko Sleigh. Journal of Nonlinear Science, 2020, 30(4): 1381-1419 doi: 10.1007/s00332-020-09611-2
|
[34] |
Shi D, Zenkov DV, Bloch AM. Hamel’s formalism for classical field theories. Journal of Nonlinear Science, 2020, 30(4): 1307-1353 doi: 10.1007/s00332-020-09609-w
|
[35] |
王亮, 安志朋, 史东华. 几何精确梁的 Hamel 场变分积分子[J]. 北京大学学报: 自然科学版, 2016 (4): 692-698
Wang Liang, An Zhipeng, Shi Donghua. Hamel’s field variational integrator of geometrically exact beam[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2016, 52: 692-698(in Chinese))
|
[36] |
高山, 史东华, 郭永新. Hamel 框架下几何精确梁的离散动量守恒律. 力学学报, 2021, 53(6): 1712-1719 doi: 10.6052/0459-1879-21-092
Gao Shan, Shi Donghua, Guo Yongxin. Discrete momentum conservation law of geometrically exact beam in Hamel’s framework. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(6): 1712-1719(in Chinese)) doi: 10.6052/0459-1879-21-092
|
[37] |
Simo JC, Tarnow N, Wong KK. Exact energy-momentum conserving algorithms and symplectic schemes for nonlinear dynamics. Computer Methods in Applied Mechanics and Engineering, 1992, 100(1): 63-116 doi: 10.1016/0045-7825(92)90115-Z
|
[38] |
Kane C, Marsden JE, Ortiz M, et al. Variational integrators and the Newmark algorithm for conservative and dissipative mechanical systems. International Journal for Numerical Methods in Engineering, 2000, 49(10): 1295-1325 doi: 10.1002/1097-0207(20001210)49:10<1295::AID-NME993>3.0.CO;2-W
|
[39] |
Bardella L, Genna F. Newmark's time integration method from the discretization of extended functionals. Journal of Applied Mechanics, 2005, 72(4): 527-537 doi: 10.1115/1.1934648
|
[40] |
汤惠颖, 张志娟, 刘铖等. 两类基于局部标架梁单元的闭锁缓解方法. 力学学报, 2021, 53(2): 482-495 doi: 10.6052/0459-1879-20-274
Tang Huiying, Zhang Zhijuan, Liu Cheng, et al. Locking alleviation techniques of two types of beam elements based on the local frame formulation. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(2): 482-495(in Chinese)) doi: 10.6052/0459-1879-20-274
|
[41] |
Brüls O. Integrated Simulation and Reduced-order Modeling of Controlled Flexible Multibody Systems. Liège, Belgique: Université de Liège, 2005
|
[1] | Xu Hong, Fu Jingli. LIE GROUP ANALYSIS FOR TORSIBNAL VIBRATION OF SERVE MOTOR DRIVEN FEEDER DRIVE SYSTEM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(9): 2000-2009. DOI: 10.6052/0459-1879-23-186 |
[2] | Zhang Teng, Liu Cheng, Zhang Zhijuan, Liu Shaokui. 5/6 DOFS CB SHELL ELEMENTS BASED ON THE LOCAL FRAME OF SE(3) GROUP[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(3): 746-761. DOI: 10.6052/0459-1879-21-584 |
[3] | Li Jialin, Zhao Jian, Sun Zhi, Guo Xinglin, Guo Xu. LIGHTWEIGHT DESIGN OF TRANSMISSION FRAME STRUCTURES FOR LAUNCH VEHICLES BASED ON MOVING MORPHABLE COMPONENTS (MMC) APPROACH[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(1): 244-251. DOI: 10.6052/0459-1879-21-309 |
[4] | Gao Shan, Shi Donghua, Guo Yongxin. DISCRETE MOMENTUM CONSERVATION LAW OF GEOMETRICALLY EXACT BEAM IN HAMEL'S FRAMEWORK[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(6): 1712-1719. DOI: 10.6052/0459-1879-21-092 |
[5] | Liu Cheng, Hu Haiyan. DYNAMIC MODELING AND COMPUTATION FOR FLEXIBLE MULTIBODY SYSTEMS BASED ON THE LOCAL FRAME OF LIE GROUP[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(1): 213-233. DOI: 10.6052/0459-1879-20-292 |
[6] | Jiang Zhongming, Li Jie. ANALYTICAL SOLUTIONS OF THE GENERALIZED PROBABILITY DENSITY EVOLUTION EQUATION OF THREE CLASSES STOCHASTIC SYSTEMS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(2): 413-421. DOI: 10.6052/0459-1879-15-221 |
[7] | Zhiwen Lan, Liangsen Chen, Mingfu Fu. On Euclidean transformations of Space-Time Frames and Principle of Material Frame Indifference[J]. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(4): 502-510. DOI: 10.6052/0459-1879-2008-4-2006-325 |
[8] | Theoretical frame for unsaturated freezing soil[J]. Chinese Journal of Theoretical and Applied Mechanics, 2005, 37(2): 204-214. DOI: 10.6052/0459-1879-2005-2-2003-039 |
[9] | The general lie symmetries and non-noether conserved quantities[J]. Chinese Journal of Theoretical and Applied Mechanics, 2004, 36(2). DOI: 10.6052/0459-1879-2004-2-2003-381 |
[10] | CONSERVATVE QUANTITIES AND LIE'S SYMMETRIES OF NONCONSERVATIVE DYNAMICAL SYSTEMS[J]. Chinese Journal of Theoretical and Applied Mechanics, 1994, 26(3): 380-384. DOI: 10.6052/0459-1879-1994-3-1995-559 |
1. |
袁歆懿,陈菊,田强. SE(3)描述的多刚体系统约束违约问题研究. 力学学报. 2024(08): 2351-2363 .
![]() |