Citation: | Chen Haihua, Zhang Xianfeng, Zhao Wenjie, Gao Zhilin, Liu Chuang, Tan Mengting, Xiong Wei, Wang Haiying, Dai Lanhong. Effect of microstructure on flow behavior during penetration of W25Fe25Ni25Mo25 high-entropy alloy projectile. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(8): 2140-2151. DOI: 10.6052/0459-1879-22-128 |
[1] |
谈梦婷, 张先锋, 包阔等. 装甲陶瓷的界面击溃效应. 力学进展, 2019, 49 (00): 392-427
Tan Mengting, Zhang Xianfeng, Bao Kuo, et al. Interface defeat of ceramic armor. Advances in Mechanics, 2019, 49 (00): 392-427(in Chinese) )
|
[2] |
Sun YX, Wang X, Ji C, et al. Experimental investigation on anti-penetration performance of polyurea coated ASTM1045 steel plate subjected to projectile impact. Defence Technology, 2021, 17(4): 18
|
[3] |
李想, 严子铭, 柳占立等. 基于仿真和数据驱动的先进结构材料设计. 力学进展, 2021, 51(1): 82-105 doi: 10.6052/1000-0992-20-012
Li Xiang, Yan Ziming, Liu Zhanli, et al. Advanced structural material design based on simulation and data-driven method. Advances in Mechanics, 2021, 51(1): 82-105(in Chinese) ) doi: 10.6052/1000-0992-20-012
|
[4] |
陈海华, 张先锋, 刘闯等. 高熵合金冲击变形行为研究进展. 爆炸与冲击, 2021, 41(04): 30-53
Chen Haihua, Zhang Xianfeng, Liu Chuang, et al. Research progress on impact deformation behavior of high-entropy alloys. Explosion and Shock Waves, 2021, 41(04): 30-53(in Chinese) )
|
[5] |
陈海华, 张先锋, 熊玮等. WFeNiMo高熵合金动态力学行为及侵彻性能研究. 力学学报, 2020, 52(05): 1443-1453
Chen Haihua, Zhang Xianfeng, Xiong Wei, et al. Dynamic mechanical behavior and penetration performance of WFeNiMo high-entropy alloy. Journal of Theoretical and Applied Mechanics, 2020, 52(05): 1443-1453(in Chinese) )
|
[6] |
李建国, 黄瑞瑞, 张倩等. 高熵合金的力学性能及变形行为研究进展. 力学学报, 2020, 52(2)
Li Jianguo, Huang Ruirui, Zhang Qian, et al. Mechnical properties and behaviors of high entropy alloys. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(2)(in Chinese)
|
[7] |
陈泽坤, 蒋佳希, 王宇嘉等. 金属增材制造中的缺陷、组织形貌和成形材料力学性能. 力学学报, 2021, 53(12): 3190-3205 doi: 10.6052/0459-1879-21-472
Chen Zekun, Jiang Jiaxi, Wang Yujia, et al. Defects, microstructures and mechanical properties of materials fabricated by metal additive manufacturing. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(12): 3190-3205(in Chinese) ) doi: 10.6052/0459-1879-21-472
|
[8] |
侯先苇, 熊玮, 陈海华等. 两种典型高熵合金冲击释能及毁伤特性研究. 力学学报, 2021, 53(9): 2528-2540 doi: 10.6052/0459-1879-21-327
Hou Xianwei, Xiong Wei, Chen Haihua, et al. Impact energy release and damage characteristics of two high-entropy alloys. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(9): 2528-2540(in Chinese) ) doi: 10.6052/0459-1879-21-327
|
[9] |
卜叶强, 王宏涛. 多主元合金中的化学短程有序. 力学进展, 2021, 51(4): 915-919 doi: 10.6052/1000-0992-21-027
Bu Yeqiang, Wang Hongtao. Short-range order in multicomponent alloys. Advances in Mechanics, 2021, 51(4): 915-919(in Chinese) ) doi: 10.6052/1000-0992-21-027
|
[10] |
焦文俊, 陈小伟. 长杆高速侵彻问题研究进展[J]. 力学进展, 2019, 49(00): 312-391
Jiao Wenjun, Chen Xiaowei. Review on long-rod penetration at hypervelocity. Advances in Mechanics, 2019, 49(00): 312-391(in Chinese) )
|
[11] |
Liu XF, Tian ZL, Zhang XF, et al. "Self-sharpening" tungsten high-entropy alloy. Acta Materialia, 2020, 186: 257-266 doi: 10.1016/j.actamat.2020.01.005
|
[12] |
Chen HH, Zhang XF, Liu C, et al. Theoretical analysis for self-sharpening penetration of tungsten high-entropy alloy into steel target with elevated impact velocities. Acta Mechanica Sinica, 2021, 37(6): 14
|
[13] |
Jiao WJ, Chen XW. Influence of the mushroomed projectile's head geometry on long-rod penetration. International Journal of Impact Engineering, 2021, 148(2): 103769
|
[14] |
Rubin MB. A simplified and modified model for long rod penetration based on ovoids of Rankine. International Journal of Impact Engineering, 2021, 156(2): 103927
|
[15] |
Tang Q, Chen X, Deng Y, et al. An approximate compressible fluid model of long-rod hypervelocity penetration. International Journal of Impact Engineering, 2021, 155: 103917
|
[16] |
Tate A. A theory for the deceleration of long rods after impact. Journal of the Mechanics & Physics of Solids, 1967, 15(6): 387-399
|
[17] |
Tate A. Long rod penetration models—Part II. Extensions to the hydrodynamic theory of penetration. International Journal of mechanical sciences, 1986, 28(9): 599-612
|
[18] |
Alekseevskii VP. Penetration of a rod into a target at high velocity. Combustion Explosion & Shock Waves, 1966, 2(2): 63-66
|
[19] |
Rosenberg Z, Marmor E, Mayseless M. On the hydrodynamic theory of long-rod penetration. International Journal of Impact Engineering, 1990, 10(1-4): 483-486 doi: 10.1016/0734-743X(90)90081-6
|
[20] |
Walker JD, Anderson Jr CE. A time-dependent model for long-rod penetration. International Journal of Impact Engineering, 2015, 16(1): 19-48
|
[21] |
孙庚辰, 吴锦云, 赵国志等. 长杆弹垂直侵彻半无限厚靶板的简化模型[J]. 兵工学报, 1981, 2(4): 1-8
Sun Gengchen, Wu Jinyun, Zhao Guozhi, et al. A simplified model of the penetration of the long-rod penetrator against the plates with semi-infinite thickness at normal angle. Acta Armammentarii, 1981, 2(4): 1-8(in Chinese) )
|
[22] |
Zhang LS, Huang FL. Model for long-rod penetration in to semi-infinite targets. Journal of Beijing University of Science and Technology, 2004, 13(3): 285-289
|
[23] |
李永池, 吴立朋, 罗春涛. 侵彻力学的一种新理论分析方法[J]. 力学与实践, 2009(2): 5
Li Yongchi, Wu Lipeng, Luo Chuntao. A new theoretical model for armor-piercing mechanics. Mechanics in Engineering, 2009(2): 5(in Chinese) )
|
[24] |
Lu ZC, Wen HM. On the penetration of high strength steel rods into semi-infinite aluminium alloy targets. International Journal of Impact Engineering, 2018, 111: 1-10 doi: 10.1016/j.ijimpeng.2017.08.006
|
[25] |
Rosenberg Z, Malka-Markovitz A, Kositski R. Inferring the ballistic resistance of thick targets from static deep indentation tests. International Journal of Protective Structures, 2018, 9(3): 347-361
|
[26] |
Anderson CE, Walker JD, Hauver GE. Target resistance for long-rod penetration into semi-infinite targets. Nuclear Engineering and Design, 1992, 138(1): 93-104 doi: 10.1016/0029-5493(92)90281-Y
|
[27] |
Rosenberg Z, Dekel E. The relation between the penetration capability of long rods and their length to diameter ratio. International Journal of Impact Engineering, 1994, 15(2): 125-129 doi: 10.1016/S0734-743X(05)80025-9
|
[28] |
陈海华, 张先锋, 刘闯, 丁力, 王季鹏, 杜宁. 基于弯管-流线模型的长杆弹侵彻头部材料流动过程分析. 兵工学报, 2019, 40(09): 1787-1796 doi: 10.3969/j.issn.1000-1093.2019.09.004
Chen Haihua, Zhang Xianfeng, Liu Chuang, et al. Analysis of material flow around projectile nose by elbow-streamline model during long-rod projectile penetrating into steel target. Acta Armamentarii, 2019, 40(09): 1787-1796(in Chinese) ) doi: 10.3969/j.issn.1000-1093.2019.09.004
|
[29] |
Chen HH, Zhang XF, Dai LH, et al. Experimental study on WFeNiMo high-entropy alloy projectile penetrating semi-infinite steel target. Defence Technology, 2021, doi: 10.1016/j.dt.2021.06.001
|
[30] |
Li Z, Tasan CC, Pradeep KG, et al. A TRIP-assisted dual-phase high-entropy alloy: grain size and phase fraction effects on deformation behavior. Acta Materialia, 2017, 131: 323-335 doi: 10.1016/j.actamat.2017.03.069
|
[31] |
Wright TW, Frank K. Approaches to Penetration Problems. Aberdeen Proving Ground, MD 21005-5066, Ballistic Research Laboratory, 1988
|