Citation: | Zhou Shuai, Xiao Zhoufang, Fu Lin, Wang Dingshun. Solution interpolation for high-order accurate adaptive flow simulation. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(6): 1732-1740 doi: 10.6052/0459-1879-22-060 |
[1] |
张来平, 常兴华, 赵钟等. 计算流体力学网格生成技术. 北京: 科学出版社, 2017
Zhang Laiping, Chang Xinghua, Zhao Zhong, et al. Mesh Generation Techniques in Computational Fluid Dynamics. Beijing: Science Press, 2017 (in Chinese)
|
[2] |
Park MA, Loseille A, Krakos J, et al. Unstructured grid adaptation: status, potential impacts, and recommended investments towards CFD 2030//46th AIAA Fluid Dynamics Conference, 2016, 2016-3323
|
[3] |
Caplan PC, Haimes R, Darmofal DL, et al. Extension of local cavity operators to 3D + t space-time mesh adaptation//AIAA Scitech 2019 Forum, 2019, 2019-1992
|
[4] |
Caplan PC, Haimes R, Darmofal DL, et al. Four-dimensional anisotropic mesh adaptation. Computer-Aided Design, 2020, 129: 102915 doi: 10.1016/j.cad.2020.102915
|
[5] |
Loseille A, Alauzet F, Menier V. Unique cavity-based operator and hierarchical domain partitioning for fast parallel generation of anisotropic meshes. Computer-Aided Design, 2017, 85: 53-67 doi: 10.1016/j.cad.2016.09.008
|
[6] |
Xiao ZF, Ollivier-Gooch C, Vazquez JDZ. Anisotropic tetrahedral mesh adaptation with improved metric alignment and orthogonality. Computer-Aided Design, 2022, 143: 103136 doi: 10.1016/j.cad.2021.103136
|
[7] |
Sharbatdar M, Ollivier-Gooch C. Mesh adaptation using C1 interpolation of the solution in an unstructured finite volume solver. International Journal for Numerical Methods in Fluids, 2018, 86(10): 637-654 doi: 10.1002/fld.4471
|
[8] |
Coulaud O, Loseille A. Very high order anisotropic metric-based mesh adaptation in 3D. Procedia Engineering, 2016, 163: 353-365 doi: 10.1016/j.proeng.2016.11.071
|
[9] |
Wang ZJ, Fidkowski K, Abgrall R, et al. High‐order CFD methods: current status and perspective. International Journal for Numerical Methods in Fluids, 2013, 72(8): 811-845 doi: 10.1002/fld.3767
|
[10] |
Hoshyari S, Mirzaee E, Ollivier-Gooch C. Efficient convergence for a higher-order unstructured finite volume solver for compressible flows. AIAA Journal, 2020, 58(4): 1490-1505 doi: 10.2514/1.J058537
|
[11] |
廖飞. 高阶精度数值方法及其在复杂流动中的应用. [博士论文]. 西安: 西北工业大学, 2018
Liao Fei. Efficient high-order high-resolution methods and the applications. [PhD Thesis]. Changsha: Northwestern Polytechnical University, 2018 (in Chinese)
|
[12] |
Pan JH, Ren YX, Sun YT. High order sub-cell finite volume schemes for solving hyperbolic conservation laws. II: Extension to two-dimensional systems on unstructured grids. Journal of Computational Physics, 2017, 338: 165-198 doi: 10.1016/j.jcp.2017.02.052
|
[13] |
雷国东, 李万爱, 任玉新. 求解可压缩流的高精度非结构网格WENO有限体积法. 计算物理, 2011, 28(5): 633-640 (Lei Guodong, Li Wanai, Ren Yuxin. A high-order unstructured-grid WENO FVM for compressible flow computation. Chinese Journal of Computational Physics, 2011, 28(5): 633-640 (in Chinese)
Lei Guodong, Li Wanai, Ren Yuxin, A high-order unstructured-grid WENO FVM for compressible flow computation. Chinese Journal of Computational Physics, 2011, 28(5): 633-640 (in Chinese))
|
[14] |
Xu Z, Cambier L, Alonso JJ, et al. Towards a scalable hierarchical high-order CFD solver//AIAA Scitech 2021 Forum, 2021, 2021-0494
|
[15] |
Alauzet F, Mehrenberger M. P1-conservative solution interpolation on unstructured triangular meshes. International Journal for Numerical Methods in Engineering, 2010, 84(13): 1552-1588 doi: 10.1002/nme.2951
|
[16] |
王瑞利. 散乱物理量逼近的插值重映算法. 计算物理, 2005, 22(4): 299-305 (Wang Ruili. An interpolated remapping algorithm for scattered physics quantities. Chinese Journal of Computational Physics, 2005, 22(4): 299-305 (in Chinese) doi: 10.3969/j.issn.1001-246X.2005.04.003
Wang Ruili. An interpolated remapping algorithm for scattered physics quantities. Chinese Journal of Computational Physics, 2005, 22(04): 299-305 (in Chinese)) doi: 10.3969/j.issn.1001-246X.2005.04.003
|
[17] |
王永健, 赵宁. 一类基于 ENO 插值的守恒重映算法. 计算物理, 2004, 21(4): 329-334 (Wang Yongjian, Zhao Ning. A kind of rezoning(remapping) algorithms based on ENO Interpolation. Chinese Journal of Computational Physics, 2004, 21(4): 329-334 (in Chinese) doi: 10.3969/j.issn.1001-246X.2004.04.008
Wang Yongjian, Zhao Ning. A kind of rezoning(remapping) algorithms based on ENO Interpolation. Chinese Journal of Computational Physics, 2004, 21(4): 329-334 (in Chinese)) doi: 10.3969/j.issn.1001-246X.2004.04.008
|
[18] |
赵小杰, 赵宁, 王东红. 一类基于RBF插值的守恒重映算法. 计算物理, 2012, 29(1): 10-16 (Zhao Xiaojie, Zhao Ning, Wang Donghong. A kind of conservative remapping algorithms based on RBF interpolations. Chinese Journal of Computational Physics, 2012, 29(1): 10-16 (in Chinese) doi: 10.3969/j.issn.1001-246X.2012.01.002
Zhao Xiaojie, Zhao Ning, Wang Donghong. A kind of conservative remapping algorithms based on RBF interpolations. Chinese Journal of Computational Physics, 2012, 29(1): 10-16 (in Chinese)) doi: 10.3969/j.issn.1001-246X.2012.01.002
|
[19] |
徐喜华, 刘娜, 陈艺冰. 非结构多面体二阶局部保界全局重映算法. 计算物理, 2018, 35(1): 22-28 (Xu Xihua, Liu Na, Chen Yibing. Second-order local-bound-preserving conservative remapping on unstructured polyhedral meshes. Chinese Journal of Computational Physics, 2018, 35(1): 22-28 (in Chinese)
Xu Xihua, Liu Na, ChenYibing. Second-order local-bound-preserving conservative remapping on unstructured polyhedral meshes. Chinese Journal of Computational Physics, 2018, 35(1): 22-28 (in Chinese))
|
[20] |
Farrell PE, Piggott MD, Pain CC, et al. Conservative interpolation between unstructured meshes via supermesh construction. Computer Methods in Applied Mechanics and Engineering, 2009, 198(33-36): 2632-2642 doi: 10.1016/j.cma.2009.03.004
|
[21] |
Slattery SR. Mesh-free data transfer algorithms for partitioned multiphysics problems: conservation, accuracy, and parallelism. Journal of Computational Physics, 2016, 307: 164-188 doi: 10.1016/j.jcp.2015.11.055
|
[22] |
Alauzet F. A parallel matrix-free conservative solution interpolation on unstructured tetrahedral meshes. Computer Methods in Applied Mechanics and Engineering, 2016, 299: 116-142 doi: 10.1016/j.cma.2015.10.012
|
[23] |
Cheng J, Shu CW. A high order accurate conservative remapping method on staggered meshes. Applied Numerical Mathematics, 2008, 58(7): 1042-1060 doi: 10.1016/j.apnum.2007.04.015
|
[24] |
Lei N, Cheng J, Shu CW. A high order positivity-preserving conservative WENO remapping method on 2D quadrilateral meshes. Computer Methods in Applied Mechanics and Engineering, 2021, 373: 113497
|
[25] |
Zhang M, Huang WZ, Qiu JX. High-order conservative positivity-preserving DG-interpolation for deforming meshes and application to moving mesh DG simulation of radiative transfer. SIAM Journal on Scientific Computing, 2020, 42(5): A3109-A3135 doi: 10.1137/19M1297907
|
[26] |
Ollivier-Gooch C, Nejat A, Michalak K. Obtaining and verifying high-order unstructured finite volume solutions to the Euler equations. AIAA Journal, 2009, 47(9): 2105-2120 doi: 10.2514/1.40585
|
[27] |
Lo SH, Wang WX. A fast robust algorithm for the intersection of triangulated surfaces. Engineering with Computers. 2004, 20(1): 11-21
|
[28] |
Campen M, Kobbelt L. Exact and robust (self-) intersections for polygonal meshes//Computer Graphics Forum, 2010: 397-406
|
[29] |
McLaurin D, Marcum D, Remotigue M, et al. Repairing unstructured triangular mesh intersections. International Journal for Numerical Methods in Engineering. 2013, 93(3): 266-275
|
[30] |
Stroud AH, Secrest D. Gaussian Quadrature Formulas. Englewood Cliffs: Prentice-Hall, 1966
|
[31] |
Pagnutti D, Ollivier-Gooch C. A generalized framework for high order anisotropic mesh adaptation. Computers & Structures, 2009, 87(11-12): 670-679
|
[32] |
Xiao ZF, Ollivier-Gooch C. Smooth gradation of anisotropic meshes using log-euclidean metrics. AIAA Journal, 2021, 59(10): 4105-4122 doi: 10.2514/1.J059864
|
[33] |
Malik S, Ollivier Gooch CF. Mesh adaptation for wakes via surface insertion//AIAA Scitech 2019 Forum, 2019, 2019-1996
|