EI、Scopus 收录
中文核心期刊
Volume 54 Issue 6
May  2022
Turn off MathJax
Article Contents
Fan Dongyu, Su Binhao, Peng Hui, Pei Xiaoyang, Zheng Zhijun, Zhang Jianxun, Qin Qinghua. Research on dynamic crushing and mechanism of mitigation and energy absorption of cellular sacrificial layers. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(6): 1630-1640 doi: 10.6052/0459-1879-22-047
Citation: Fan Dongyu, Su Binhao, Peng Hui, Pei Xiaoyang, Zheng Zhijun, Zhang Jianxun, Qin Qinghua. Research on dynamic crushing and mechanism of mitigation and energy absorption of cellular sacrificial layers. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(6): 1630-1640 doi: 10.6052/0459-1879-22-047

RESEARCH ON DYNAMIC CRUSHING AND MECHANISM OF MITIGATION AND ENERGY ABSORPTION OF CELLULAR SACRIFICIAL LAYERS

doi: 10.6052/0459-1879-22-047
  • Received Date: 2022-01-24
  • Accepted Date: 2022-04-14
  • Available Online: 2022-04-15
  • Publish Date: 2022-06-18
  • In this paper, the dynamic crushing behavior and the mechanism of mitigation and energy absorption of the cellular sacrificial layers subjected to the intensive dynamic loading are investigated theoretically and numerically. Based on the rigid, perfectly plastic, locking (R-PP-L) and the rigid, plastic hardening (R-PH) constitutive models of the cellular materials, a theoretical model of the dynamic response of the cellular sacrificial layers subjected to the intensive dynamic loading is developed. The one-dimensional shock wave propagation in the cellular sacrificial layers is analyzed further. Finite element model is established by employing the Voronoi method and the numerical simulations are carried out to obtain the deformation modes and the response curves whilst the effect of interface on the mitigation and the energy absorption of the cellular sacrificial layers is discussed in detail. It is shown that the theoretical model considering the plastic hardening of cellular materials (R-PH model) can effectively predict the reflection of incident wave at the distal end and the secondary compression process of the cellular sacrificial layers as well as the enhancement phenomenon of the end stress than the R-PP-L model. Comparisons between the continuous and discontinuous interface models demonstrate that the continuous design of the cellular sacrificial layers can enhance the mitigation and the energy absorption while the interfaces separated by the rigid plates can decrease the effect of the incompleteness of interface cells. The peak stresses at the ends subjected to the same momentum increase with the increase of impact energy. It is possible that the reflection of the shock wave at the ends results in the stress enhancement at the ends.

     

  • loading
  • [1]
    华云龙, 余同希. 多胞材料的力学行为. 力学进展, 1991, 4: 457-469 (Hua Yunlong, Yu Tongxi. Mechanial behaviour of cellular solids. Advances in Mechanics, 1991, 4: 457-469 (in Chinese) doi: 10.6052/1000-0992-1991-4-J1991-052

    Hua Yunlong, Yu Tongxi. Mechanial behaviour of cellular solids. Chinese Journal of Advances in Mechanics, 1991, 4: 457-469(in Chinese)) doi: 10.6052/1000-0992-1991-4-J1991-052
    [2]
    卢天健, 何德坪, 陈常青等. 超轻多孔金属材料的多功能特性及应用. 力学进展, 2006, 4(4): 517-535 (Lu Tianjian, He Deping, Chen Changqing, et al. The multi-functionality of ultra-light cellular metals and their applications. Advances in Mechanics, 2006, 4(4): 517-535 (in Chinese) doi: 10.3321/j.issn:1000-0992.2006.04.004

    Lu Tianjian, He Deping, Chen Changqing, et al. The multi-functionality of ultra-light cellular metals and their applications. Chinese Journal of Advances in Mechanics, 2006(4): 517-535(in Chinese)) doi: 10.3321/j.issn:1000-0992.2006.04.004
    [3]
    陈祥, 李言祥. 金属泡沫材料研究进展. 材料导报, 2003, 5: 5-8, 11 (Chen Xiang, Li Yanxiang. Cellular metals: research advances and applications. Chinese Journal of Materials Reports, 2003, 5: 5-8, 11 (in Chinese) doi: 10.3321/j.issn:1005-023X.2003.11.002

    Chen Xiang, Li Yanxiang. Cellular metals: research advances and applications. Chinese Journal of Materials Reports, 2003, 5: 5-8 + 11(in Chinese)) doi: 10.3321/j.issn:1005-023X.2003.11.002
    [4]
    Deshpande V, Fleck NA. One-dimensional response of sandwich plates to underwater shock loading. Journal of the Mechanics and Physics of Solids, 2005, 53(11): 2347-2383 doi: 10.1016/j.jmps.2005.06.006
    [5]
    Sun G, Wang E, Wang H, et al. Low-velocity impact behaviour of sandwich panels with homogeneous and stepwise graded foam cores. Materials & Design, 2018, 160: 1117-1136
    [6]
    Wang E, Gardner N, Shukla A. The blast resistance of sandwich composites with stepwise graded cores. International Journal of Solids and Structures, 2009, 46(18-19): 3492-3502 doi: 10.1016/j.ijsolstr.2009.06.004
    [7]
    Cai S, Liu J, Zhang P, et al. , Experimental study on failure mechanisms of sandwich panels withmultilayered aluminum foam/UHMWPE laminate core under combined blast and fragments loading. Thin-Walled Structures, 2021, 159: 107227 doi: 10.1016/j.tws.2020.107227
    [8]
    Duan Y, Zhao X, Liu Z, et al. Dynamic response of additively manufactured graded foams. Composites Part B, 2020, 183: 107630 doi: 10.1016/j.compositesb.2019.107630
    [9]
    Duan Y, Ding Y, Liu Z, et al. Effects of cell size vs cell-wall thickness gradients on compressive behavior of additively manufactured foams. Composites Science and Technology, 2020, 199: 108339
    [10]
    Rapaka SD, Pandey M, Annabattul RK. Effect of defects on the dynamic compressive behavior of cellular solids. International Journal of Mechanical Sciences, 2020, 170: 105365 doi: 10.1016/j.ijmecsci.2019.105365
    [11]
    Liu H, Ding S, Feng B. Impact response and energy absorption of functionally graded foam under temperature gradient environment. Composites Part B:Engineering, 2019, 172: 516-532 doi: 10.1016/j.compositesb.2019.05.072
    [12]
    Czarnota C, Molinari A, Mercier S. Steady shock waves in cellular metals: Viscosity and micro-inertia effects. International Journal of Plasticity, 2020, 135: 102816 doi: 10.1016/j.ijplas.2020.102816
    [13]
    Reid SR, Peng C. Dynamic uniaxial crushing of wood. International Journal of Impact Engineering, 1997, 19(5-6): 531-570 doi: 10.1016/S0734-743X(97)00016-X
    [14]
    Lopatnikov SL, Gama BA, Jahirul HM, et al. Dynamics of metal foam deformation during Taylor cylinder–Hopkinson bar impact experiment. Composite Structures, 2003, 61(1-2): 61-71 doi: 10.1016/S0263-8223(03)00039-4
    [15]
    Hanssen AG, Hopperstad OS, Langseth M, et al. Validation of constitutive models applicable to aluminium foams. International Journal of Mechanical Sciences, 2002, 44(2): 359-406 doi: 10.1016/S0020-7403(01)00091-1
    [16]
    Zheng Z, Wang C, Yu J, et al. Dynamic stress–strain states for metal foams using a 3 D cellular model. Journal of the Mechanics and Physics of Solids, 2014, 72: 93-114 doi: 10.1016/j.jmps.2014.07.013
    [17]
    Ding Y, Wang S, Zheng Z, et al. Dynamic crushing of cellular materials: A unique dynamic stress-strain state curve. Mechanics of Materials, 2016, 100: 219-231 doi: 10.1016/j.mechmat.2016.07.001
    [18]
    Sun Y, Li QM. Dynamic compressive behaviour of cellular materials: A review of phenomenon, mechanism and modelling. International Journal of Impact Engineering, 2018, 112: 74-115 doi: 10.1016/j.ijimpeng.2017.10.006
    [19]
    Hanssen AG, Enstock L, Langseth M. Close-range blast loading of aluminum foam panels. International Journal of Impact Engineering, 2002, 27(6): 593-618 doi: 10.1016/S0734-743X(01)00155-5
    [20]
    丁圆圆, 王士龙, 郑志军等. 多胞牺牲层的抗爆炸分析. 力学学报, 2014, 46(6): 825-833 (Ding Yuanyuan, Wang Shilong, Zheng Zhijun, et al. Anti-blast analysis of cellular sacrificial cladding. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(6): 825-833 (in Chinese) doi: 10.6052/0459-1879-14-187

    Ding Yuanyuan, Wang Shilong, Zheng Zhijun, et al. Anti-blast analysis of cellular sacrificial cladding. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(6): 825-833(in Chinese)) doi: 10.6052/0459-1879-14-187
    [21]
    Chang B, Zheng Z, Zhang Y, et al. Crashworthiness design of graded cellular materials: An asymptotic solution considering loading rate sensitivity. International Journal of Impact Engineering, 2020, 143: 103611
    [22]
    Karagiozova D, Langdon GS, Nurick GN. Propagation of compaction waves in metal foams exhibiting strain hardening. International Journal of Solids and Structures, 2012, 49(19-20): 2763-2777 doi: 10.1016/j.ijsolstr.2012.03.012
    [23]
    Karagiozova D, Alves M. Compaction of a double-layered metal foam block impacting a rigid wall. International Journal of Solids and Structures, 2014, 51(13): 2424-2438 doi: 10.1016/j.ijsolstr.2014.03.012
    [24]
    Karagiozova D, Alves M. Stress waves in layered cellular materials—Dynamic compaction under axial impact. International Journal of Mechanical Sciences, 2015, 101-102: 196-213 doi: 10.1016/j.ijmecsci.2015.07.024
    [25]
    Ding Z, Zheng Z, Yu J. A wave propagation model of distributed energy absorption system for trains. International Journal of Crashworthiness, 2019, 24(5): 508-522 doi: 10.1080/13588265.2018.1479482
    [26]
    Li L, Han B, Zhang Q, et al. Dynamic response of clamped sandwich beams: analytical modeling. Theoretical and Applied Mechanics Letters, 2019, 9(6): 391-396 doi: 10.1016/j.taml.2019.06.002
    [27]
    Yang B, Cao Z, Chang Z, et al. The effect of the reflected shock wave on the foam material. International Journal of Impact Engineering, 2021, 149: 103773 doi: 10.1016/j.ijimpeng.2020.103773
    [28]
    Fleck NA, Deshpande VS. The resistance of clamped sandwich beams to shock loading. Jouenal of Applied Mechanics, 2004, 71(3): 386-401 doi: 10.1115/1.1629109
    [29]
    Ma GW, Ye ZQ. Analysis of foam claddings for blast alleviation. International Journal of Impact Engineering, 2007, 34(1): 60-70 doi: 10.1016/j.ijimpeng.2005.10.005
    [30]
    Karagiozova D. Velocity attenuation and force transfer by a single- and double-layer claddings made of foam materials. International Journal of Protective Structures, 2011, 2(4): 417-437 doi: 10.1260/2041-4196.2.4.417
    [31]
    Zheng Z, Yu J, Li J. Dynamic crushing of 2D cellular structures: A finite element study. International Journal of Impact Engineering, 2005, 32: 650-664 doi: 10.1016/j.ijimpeng.2005.05.007
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(2)

    Article Metrics

    Article views (554) PDF downloads(129) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return