EI、Scopus 收录
中文核心期刊
Volume 54 Issue 5
May  2022
Turn off MathJax
Article Contents
Huang Jianliang, Zhang Bingxu, Chen Shuhui. Two generalized incremental harmonic balance methods with optimization for iteration step. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(5): 1353-1363 doi: 10.6052/0459-1879-22-042
Citation: Huang Jianliang, Zhang Bingxu, Chen Shuhui. Two generalized incremental harmonic balance methods with optimization for iteration step. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(5): 1353-1363 doi: 10.6052/0459-1879-22-042

TWO GENERALIZED INCREMENTAL HARMONIC BALANCE METHODS WITH OPTIMIZATION FOR ITERATION STEP

doi: 10.6052/0459-1879-22-042
  • Received Date: 2022-01-21
  • Accepted Date: 2022-03-02
  • Available Online: 2022-03-03
  • Publish Date: 2022-05-01
  • As a semi-analytial and semi-numerical method, the incremental harmonic balance (IHB) method is capable of dealing with strongly nonlinear systems to any desired accuracy. However, as it is often in case numerical method, there exists initial value problem that can cause divergence with using the IHB method. To solve the initial value problem, two generalized IHB method are presented in this work. The first one (GIHB1) is combined with backtracking line search (BLS) optimization algorithm, which adjust the iteration step to decrease for the convergence of the solutions. The second one (GIHB2) is combined with BLS optimization algorithm and the dogleg method, which is an iterative optimization algorithm for the solution of non-linear least squares problems. The GIHB2 method is adopted for the Newton-Raphson iteration with gradient descent such that the convergence of the solutions increases monotonically along the path with gradient descent way with two parameters. At the end, two examples are presented to show the efficiency and the advantages of the two GIHB methods for initial value problem.

     

  • loading
  • [1]
    Lau SL, Cheung YK. Amplitude incremental variational principle for nonlinear vibration of elastic systems. Journal of Applied Mechanics, 1981, 48(4): 959-964 doi: 10.1115/1.3157762
    [2]
    Lau SL. The incremental harmonic balance method and its applications to nonlinear vibrations//Proceedings of the International Conference on Structural Dynamics, Vibration, Noise and Control, Hong Kong, 1995: 50-57
    [3]
    陈树辉. 强非线性振动系统的定量分析方法. 北京: 科学出版社, 2007

    Chen Shuhui. Quantitative Analysis Methods for Strongly Nonlinear Vibration. Beijing: Science Press, 2007 (in Chinese))
    [4]
    Cheung YK, Chen SH, Lau SL. Application of the incremental harmonic balance method to cubic non-linearity systems. Journal of Sound and Vibration, 1990, 140(2): 273-286 doi: 10.1016/0022-460X(90)90528-8
    [5]
    Liu G, Lv ZR, Liu JK, et al. Quasi-periodic aeroelastic response analysis of an airfoil with external store by incremental harmonic balance method. International Journal of Non-Linear Mechanics, 2018, 100: 10-19 doi: 10.1016/j.ijnonlinmec.2018.01.004
    [6]
    Wang S, Hua L, Yang C, et al. Nonlinear vibrations of a piecewise-linear quarter-car truck model by incremental harmonic balance method. Nonlinear Dynamics, 2018, 92(4): 1719-1732 doi: 10.1007/s11071-018-4157-6
    [7]
    Zhou SH, Ren ZH, Zhang YC, et al. Analysis of flow characteristics of granular material unloaded on nonlinear vibration inclined platform. Applied Mathematical Modelling, 2020, 78: 57-74 doi: 10.1016/j.apm.2019.10.004
    [8]
    杜亚震, 王文华, 黄一. 基于增量谐波平衡方法的Spar平台垂荡纵摇耦合内共振响应研究. 振动与冲击, 2020, 39(1): 85-90 (Du Yazhen, Wang Wenhua, Huang Yi. Swing-pitch coupled internal resonance responses of Spar platform based on IHBM. Journal of Vibration and Shock, 2020, 39(1): 85-90 (in Chinese)
    [9]
    Wang XF, Zhu WD. Dynamic analysis of an automotive belt-drive system with a noncircular sprocket by a modified incremental harmonic balance method. Journal of Vibration and Acoustics, 2016, 139(1): 011009
    [10]
    Mitra KR, Banik AK, Datta TK, et al. Nonlinear roll oscillation of semisubmersible system and its control. International Journal of Non-Linear Mechanics, 2018, 107: 42-55 doi: 10.1016/j.ijnonlinmec.2018.10.006
    [11]
    Li YG, Chen TN, Wang XP. Non-linear dynamics of gear pair with dynamic backlash subjected to combined internal and external periodic excitations. Journal of Vibration and Control, 2016, 22(6): 1693-1703 doi: 10.1177/1077546314544350
    [12]
    Zhou SH, Liu J, Li CF, et al. Nonlinear behavior of a spur gear pair transmission system with backlash. Journal of Vibroengineering, 2014, 16(8): 3850-3861
    [13]
    Wang XF, Zhu WD, Liu M. Steady-state periodic solutions of the nonlinear wave propagation problem of a one-dimensional lattice using a new methodology with an incremental harmonic balance method that handles time delays. Nonlinear Dynamics, 2020, 100: 1457-1467 doi: 10.1007/s11071-020-05535-4
    [14]
    Cheng C, Li SM, Wang Y, et al. Resonance response of a quasi-zero stiffness vibration isolator considering a constant force. Journal of Vibration Engineering & Technologies, 2018, 6(6): 471-481
    [15]
    Li YP, Chen SY. Periodic solution and bifurcation of a suspension vibration system by incremental harmonic balance and continuation method. Nonlinear Dynamics, 2016, 83(1): 941-950
    [16]
    Karličić D, Chatterjee T, Cajić M, et al. Parametrically amplified Mathieu-Duffing nonlinear energy harvesters. Journal of Sound and Vibration, 2020, 488: 115677 doi: 10.1016/j.jsv.2020.115677
    [17]
    Shen JH, Lin KC, Chen SH, et al. Bifurcation and route-to-chaos analyses for Mathieu–Duffing oscillator by the incremental harmonic balance method. Nonlinear Dynamics, 2008, 52(4): 403-414 doi: 10.1007/s11071-007-9289-z
    [18]
    Shen YJ, Wen SF, Li XH, et al. Dynamical analysis of fractional-order nonlinear oscillator by incremental harmonic balance method. Nonlinear Dynamics, 2016, 85(3): 1457-1467 doi: 10.1007/s11071-016-2771-8
    [19]
    Huang JL, Zhu WD. An incremental harmonic balance method with two timescales for quasiperiodic motion of nonlinear systems whose spectrum contains uniformly spaced sideband frequencies. Nonlinear Dynamics, 2017, 90(2): 1015-1033 doi: 10.1007/s11071-017-3708-6
    [20]
    Huang JL, Zhu WD. A new incremental harmonic balance method with two time scales for quasi-periodic motions of an axially moving beam with internal resonance under single-tone external excitation. Journal of Vibration and Acoustics, 2017, 139(2): 021010 doi: 10.1115/1.4035135
    [21]
    Huang JL, Zhou WJ, Zhu WD. Quasi-periodic motions of high-dimensional nonlinear models of a translating beam with a stationary load subsystem under harmonic boundary excitation. Journal of Sound and Vibration, 2019, 462: 114870 doi: 10.1016/j.jsv.2019.114870
    [22]
    窦苏广, 叶敏, 张伟. 基于增量谐波平衡的参激系统非线性识别法. 力学学报, 2010, 42(2): 332-336 (Dou Suguang, Ye Min, Zhang Wei. Nonlinearity system identification method with parametric excitation based on the incremental harmonic balance method. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(2): 332-336 (in Chinese) doi: 10.6052/0459-1879-2010-2-2008-770
    [23]
    苏鸾鸣, 叶敏. 高维非线性振动系统参数识别. 力学学报, 2012, 44(2): 425-436 (Su Luanming, Ye Min. Parametric identification for high-dimensional nonlinear vibration system. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(2): 425-436 (in Chinese) doi: 10.6052/0459-1879-2012-2-20120227
    [24]
    吴健, 叶敏, 李兴等. 黏弹性复合材料梁动力学实验建模的研究. 力学学报, 2011, 43(3): 586-597 (Wu Jian, Ye Min, Li Xing, et al. Research of the dynamic experimental modeling for viscoelastic composite beam. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(3): 586-597 (in Chinese)
    [25]
    朱辰钟, 叶敏. 参强联合作用非线性结构动力学实验建模. 力学学报, 2013, 45(1): 116-128 (Zhu Chenzhong, Ye Min. Research of dynamic experimental modeling for nonlinear structure under parametric and forced excitation. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(1): 116-128 (in Chinese)
    [26]
    Wang XF, Zhu WD. A modified incremental harmonic balance method based on the fast Fourier transform and Broyden's method. Nonlinear Dynamics, 2015, 81(1): 981-989
    [27]
    Zhou SH, Song GQ, Li YM, et al. Dynamic and steady analysis of a 2-DOF vehicle system by modified incremental harmonic balance method. Nonlinear Dynamics, 2019, 98(1): 75-94 doi: 10.1007/s11071-019-05172-6
    [28]
    Zheng ZC, Lu ZR, Chen YM, et al. A modified incremental harmonic balance method combined with Tikhonov regularization for periodic motion of nonlinear system. Journal of Applied Mechanics, 2021, 89(2): 021001
    [29]
    Dennis JE, Schnabel RB. Numerical Methods for Unconstrained Optimization and Nonlinear Equations. SIAM, 1996
    [30]
    Nocedal J, Wright SJ. Numerical Optimization (Second Edition). Springer, 2006
    [31]
    Motta V, Malzacher L. Open-loop and closed-loop flow control based on Van der Pol modeling. Acta Mechanica, 2018, 229(1): 389-401 doi: 10.1007/s00707-017-1975-4
    [32]
    Akhtar I, Marzouk OA, Nayfeh AH. A van der Pol-Duffing oscillator model of hydrodynamic forces on canonical structures. Journal of Computational and Nonlinear Dynamics, 2009, 4(4): 041006 doi: 10.1115/1.3192127
    [33]
    Facchinettia ML, Langrea E, Biolley F. Coupling of structure and wake oscillators in vortex-induced vibrations. Journal of Fluids and Structures, 2004, 19: 123-140 doi: 10.1016/j.jfluidstructs.2003.12.004
    [34]
    Burton TD. Non-linear oscillator limit cycle analysis using a time transformation approach. International Journal of Non-linear Mechanics, 1982, 17: 7-19 doi: 10.1016/0020-7462(82)90033-6
    [35]
    Barron MA, Sen M. Synchronization of four coupled van der Pol oscillators. Nonlinear Dynamics, 2009, 56: 357-367 doi: 10.1007/s11071-008-9402-y
    [36]
    Siewe RT, Talla AF, Woafo P. Experimental synchronization of two Van der Pol oscillators with nonlinear and delayed unidirectional coupling. International Journal of Nonlinear Sciences and Numerical Simulation, 2017, 18(6): 515-523 doi: 10.1515/ijnsns-2017-0024
    [37]
    Lau SL, Yuen SW. The Hopf bifurcation and limit cycle by the incremental harmonic balance method. Computer Methods in Applied Mechanics and Engineering, 1991, 91: 1109-1121 doi: 10.1016/0045-7825(91)90065-E
    [38]
    Xu Z, Lau SL. Asymptotic method for nonlinear autonomous system with two degrees of freedom//Proc. Asia Vibration Conference '89, 1989: 69-74
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article Metrics

    Article views (406) PDF downloads(101) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return