Citation: | Huang Jianliang, Zhang Bingxu, Chen Shuhui. Two generalized incremental harmonic balance methods with optimization for iteration step. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(5): 1353-1363 doi: 10.6052/0459-1879-22-042 |
[1] |
Lau SL, Cheung YK. Amplitude incremental variational principle for nonlinear vibration of elastic systems. Journal of Applied Mechanics, 1981, 48(4): 959-964 doi: 10.1115/1.3157762
|
[2] |
Lau SL. The incremental harmonic balance method and its applications to nonlinear vibrations//Proceedings of the International Conference on Structural Dynamics, Vibration, Noise and Control, Hong Kong, 1995: 50-57
|
[3] |
陈树辉. 强非线性振动系统的定量分析方法. 北京: 科学出版社, 2007
Chen Shuhui. Quantitative Analysis Methods for Strongly Nonlinear Vibration. Beijing: Science Press, 2007 (in Chinese))
|
[4] |
Cheung YK, Chen SH, Lau SL. Application of the incremental harmonic balance method to cubic non-linearity systems. Journal of Sound and Vibration, 1990, 140(2): 273-286 doi: 10.1016/0022-460X(90)90528-8
|
[5] |
Liu G, Lv ZR, Liu JK, et al. Quasi-periodic aeroelastic response analysis of an airfoil with external store by incremental harmonic balance method. International Journal of Non-Linear Mechanics, 2018, 100: 10-19 doi: 10.1016/j.ijnonlinmec.2018.01.004
|
[6] |
Wang S, Hua L, Yang C, et al. Nonlinear vibrations of a piecewise-linear quarter-car truck model by incremental harmonic balance method. Nonlinear Dynamics, 2018, 92(4): 1719-1732 doi: 10.1007/s11071-018-4157-6
|
[7] |
Zhou SH, Ren ZH, Zhang YC, et al. Analysis of flow characteristics of granular material unloaded on nonlinear vibration inclined platform. Applied Mathematical Modelling, 2020, 78: 57-74 doi: 10.1016/j.apm.2019.10.004
|
[8] |
杜亚震, 王文华, 黄一. 基于增量谐波平衡方法的Spar平台垂荡纵摇耦合内共振响应研究. 振动与冲击, 2020, 39(1): 85-90 (Du Yazhen, Wang Wenhua, Huang Yi. Swing-pitch coupled internal resonance responses of Spar platform based on IHBM. Journal of Vibration and Shock, 2020, 39(1): 85-90 (in Chinese)
|
[9] |
Wang XF, Zhu WD. Dynamic analysis of an automotive belt-drive system with a noncircular sprocket by a modified incremental harmonic balance method. Journal of Vibration and Acoustics, 2016, 139(1): 011009
|
[10] |
Mitra KR, Banik AK, Datta TK, et al. Nonlinear roll oscillation of semisubmersible system and its control. International Journal of Non-Linear Mechanics, 2018, 107: 42-55 doi: 10.1016/j.ijnonlinmec.2018.10.006
|
[11] |
Li YG, Chen TN, Wang XP. Non-linear dynamics of gear pair with dynamic backlash subjected to combined internal and external periodic excitations. Journal of Vibration and Control, 2016, 22(6): 1693-1703 doi: 10.1177/1077546314544350
|
[12] |
Zhou SH, Liu J, Li CF, et al. Nonlinear behavior of a spur gear pair transmission system with backlash. Journal of Vibroengineering, 2014, 16(8): 3850-3861
|
[13] |
Wang XF, Zhu WD, Liu M. Steady-state periodic solutions of the nonlinear wave propagation problem of a one-dimensional lattice using a new methodology with an incremental harmonic balance method that handles time delays. Nonlinear Dynamics, 2020, 100: 1457-1467 doi: 10.1007/s11071-020-05535-4
|
[14] |
Cheng C, Li SM, Wang Y, et al. Resonance response of a quasi-zero stiffness vibration isolator considering a constant force. Journal of Vibration Engineering & Technologies, 2018, 6(6): 471-481
|
[15] |
Li YP, Chen SY. Periodic solution and bifurcation of a suspension vibration system by incremental harmonic balance and continuation method. Nonlinear Dynamics, 2016, 83(1): 941-950
|
[16] |
Karličić D, Chatterjee T, Cajić M, et al. Parametrically amplified Mathieu-Duffing nonlinear energy harvesters. Journal of Sound and Vibration, 2020, 488: 115677 doi: 10.1016/j.jsv.2020.115677
|
[17] |
Shen JH, Lin KC, Chen SH, et al. Bifurcation and route-to-chaos analyses for Mathieu–Duffing oscillator by the incremental harmonic balance method. Nonlinear Dynamics, 2008, 52(4): 403-414 doi: 10.1007/s11071-007-9289-z
|
[18] |
Shen YJ, Wen SF, Li XH, et al. Dynamical analysis of fractional-order nonlinear oscillator by incremental harmonic balance method. Nonlinear Dynamics, 2016, 85(3): 1457-1467 doi: 10.1007/s11071-016-2771-8
|
[19] |
Huang JL, Zhu WD. An incremental harmonic balance method with two timescales for quasiperiodic motion of nonlinear systems whose spectrum contains uniformly spaced sideband frequencies. Nonlinear Dynamics, 2017, 90(2): 1015-1033 doi: 10.1007/s11071-017-3708-6
|
[20] |
Huang JL, Zhu WD. A new incremental harmonic balance method with two time scales for quasi-periodic motions of an axially moving beam with internal resonance under single-tone external excitation. Journal of Vibration and Acoustics, 2017, 139(2): 021010 doi: 10.1115/1.4035135
|
[21] |
Huang JL, Zhou WJ, Zhu WD. Quasi-periodic motions of high-dimensional nonlinear models of a translating beam with a stationary load subsystem under harmonic boundary excitation. Journal of Sound and Vibration, 2019, 462: 114870 doi: 10.1016/j.jsv.2019.114870
|
[22] |
窦苏广, 叶敏, 张伟. 基于增量谐波平衡的参激系统非线性识别法. 力学学报, 2010, 42(2): 332-336 (Dou Suguang, Ye Min, Zhang Wei. Nonlinearity system identification method with parametric excitation based on the incremental harmonic balance method. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(2): 332-336 (in Chinese) doi: 10.6052/0459-1879-2010-2-2008-770
|
[23] |
苏鸾鸣, 叶敏. 高维非线性振动系统参数识别. 力学学报, 2012, 44(2): 425-436 (Su Luanming, Ye Min. Parametric identification for high-dimensional nonlinear vibration system. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(2): 425-436 (in Chinese) doi: 10.6052/0459-1879-2012-2-20120227
|
[24] |
吴健, 叶敏, 李兴等. 黏弹性复合材料梁动力学实验建模的研究. 力学学报, 2011, 43(3): 586-597 (Wu Jian, Ye Min, Li Xing, et al. Research of the dynamic experimental modeling for viscoelastic composite beam. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(3): 586-597 (in Chinese)
|
[25] |
朱辰钟, 叶敏. 参强联合作用非线性结构动力学实验建模. 力学学报, 2013, 45(1): 116-128 (Zhu Chenzhong, Ye Min. Research of dynamic experimental modeling for nonlinear structure under parametric and forced excitation. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(1): 116-128 (in Chinese)
|
[26] |
Wang XF, Zhu WD. A modified incremental harmonic balance method based on the fast Fourier transform and Broyden's method. Nonlinear Dynamics, 2015, 81(1): 981-989
|
[27] |
Zhou SH, Song GQ, Li YM, et al. Dynamic and steady analysis of a 2-DOF vehicle system by modified incremental harmonic balance method. Nonlinear Dynamics, 2019, 98(1): 75-94 doi: 10.1007/s11071-019-05172-6
|
[28] |
Zheng ZC, Lu ZR, Chen YM, et al. A modified incremental harmonic balance method combined with Tikhonov regularization for periodic motion of nonlinear system. Journal of Applied Mechanics, 2021, 89(2): 021001
|
[29] |
Dennis JE, Schnabel RB. Numerical Methods for Unconstrained Optimization and Nonlinear Equations. SIAM, 1996
|
[30] |
Nocedal J, Wright SJ. Numerical Optimization (Second Edition). Springer, 2006
|
[31] |
Motta V, Malzacher L. Open-loop and closed-loop flow control based on Van der Pol modeling. Acta Mechanica, 2018, 229(1): 389-401 doi: 10.1007/s00707-017-1975-4
|
[32] |
Akhtar I, Marzouk OA, Nayfeh AH. A van der Pol-Duffing oscillator model of hydrodynamic forces on canonical structures. Journal of Computational and Nonlinear Dynamics, 2009, 4(4): 041006 doi: 10.1115/1.3192127
|
[33] |
Facchinettia ML, Langrea E, Biolley F. Coupling of structure and wake oscillators in vortex-induced vibrations. Journal of Fluids and Structures, 2004, 19: 123-140 doi: 10.1016/j.jfluidstructs.2003.12.004
|
[34] |
Burton TD. Non-linear oscillator limit cycle analysis using a time transformation approach. International Journal of Non-linear Mechanics, 1982, 17: 7-19 doi: 10.1016/0020-7462(82)90033-6
|
[35] |
Barron MA, Sen M. Synchronization of four coupled van der Pol oscillators. Nonlinear Dynamics, 2009, 56: 357-367 doi: 10.1007/s11071-008-9402-y
|
[36] |
Siewe RT, Talla AF, Woafo P. Experimental synchronization of two Van der Pol oscillators with nonlinear and delayed unidirectional coupling. International Journal of Nonlinear Sciences and Numerical Simulation, 2017, 18(6): 515-523 doi: 10.1515/ijnsns-2017-0024
|
[37] |
Lau SL, Yuen SW. The Hopf bifurcation and limit cycle by the incremental harmonic balance method. Computer Methods in Applied Mechanics and Engineering, 1991, 91: 1109-1121 doi: 10.1016/0045-7825(91)90065-E
|
[38] |
Xu Z, Lau SL. Asymptotic method for nonlinear autonomous system with two degrees of freedom//Proc. Asia Vibration Conference '89, 1989: 69-74
|