Citation:  Huang Xiaoting, Sun Pengnan, Lü Hongguan, Zhong Shiyun. Development of a numerical wave tank with a corrected smoothed particle hydrodynamics scheme to reduce nonphysical energy dissipation. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(6): 15021515 doi: 10.6052/0459187922041 
[1] 
Luo M, Khayyer A, Lin P. Particle methods in ocean and coastal engineering. Applied Ocean Research, 2021, 114: 102734 doi: 10.1016/j.apor.2021.102734

[2] 
Grilli ST, Vogelmann S, Watts P. Development of a 3D numerical wave tank for modeling tsunami generation by underwater landslides. Engineering Analysis with Boundary Elements, 2002, 26(4): 301313 doi: 10.1016/S09557997(01)001138

[3] 
Sung HG. BEM computations of 3D fully nonlinear freesurface flows caused by advancing surface disturbances. International Journal of Offshore and Polar Engineering, 2008, 18(4): 292301

[4] 
Baudic SF, Williams AN, Kareem A. A twodimensional numerical wave flume—Part 1: Nonlinear wave generation, propagation, and absorption. Journal of Offshore Mechanics and Arctic Engineering, 2001, 123(2): 7075 doi: 10.1115/1.1365117

[5] 
曹洪建, 万德成. 基于naoeFOAMSJTU求解器构建三维数值波浪水池. 复旦学报(自然科学版), 2013, 52(5): 627634 (Cao Hongjian, Wan Decheng. Threedimensional numerical wave tank based on naoeFOAMSJTU solver. Journal of Fudan University (Natural Science)
Cao Hongjian, Wan decheng. Threedimensional numerical wave tank based on naoeFOAMSJTU solver. Journal of Fudan University (Natural Science), 2013, 52(05): 627634 (in Chinese)

[6] 
董志, 詹杰民. 基于VOF方法的数值波浪水槽以及造波、消波方法研究. 水动力学研究与进展: A辑, 2009, 24(1): 1521 (Dong Zhi, Zhan Jiemin. Comparison of existing methods for wave generating and absorbing in VOFbased numerical tank. Chinese Journal of Hydrodynamics, 2009, 24(1): 1521 (in Chinese)
Dong Zhi, Zhan Jiemin. Comparison of existing methods for wave generating and absorbing in VOFbased numerical tank. Chinese Journal of Hydrodynamics, 2009, 24(1): 1521 (in Chinese)

[7] 
Hirt CW, Nichols BD. Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics, 1981, 39(1): 201225 doi: 10.1016/00219991(81)901455

[8] 
Huang C, Zhang DH, Si YL, et al. Coupled finite particle method for simulations of wave and structure interaction. Coastal Engineering, 2018, 140: 147160

[9] 
Ye T, Pan D, Huang C, et al. Smoothed particle hydrodynamics (SPH) for complex fluid flows: recent developments in methodology and applications. Physics of Fluids, 2019, 31(1): 011301 doi: 10.1063/1.5068697

[10] 
Zhang A, Sun P, Ming F, et al. Smoothed particle hydrodynamics and its applications in fluidstructure interactions. Journal of Hydrodynamics, Ser. B, 2017, 29(2): 187216 doi: 10.1016/S10016058(16)607308

[11] 
Liu M, Zhang ZL. Smoothed particle hydrodynamics (SPH) for modeling fluidstructure interactions. Science China: Physics, Mechanics and Astronomy, 2019, 62(8): 542

[12] 
张华, 邵颂东. 水流结构相互作用的粒子法数值仿真. 水利水电技术, 2006, 9: 4447
Zhang Hua, Shao Songdong. Numerical simulation for fluidstructure interaction with particle method. Water Resources and Hydropower Engineering, 2006, 9: 4447 (in Chinese)

[13] 
Guilcher PM, Ducorzet G, Alessandrini B, et al. Water wave propagation using SPH models//Proceedings 2nd International Spheric Workshop, 2007: 119122

[14] 
Omidvar P, Norouzi H, Zarghami A. Smoothed particle hydrodynamics for water wave propagation in a channel. International Journal of Modern Physics C, 2015, 26(8): 1550085 doi: 10.1142/S0129183115500850

[15] 
Antuono M, Colagrossi A, Marrone S, et al. Propagation of gravity waves through an SPH scheme with numerical diffusive terms. Computer Physics Communications, 2011, 182(4): 866877

[16] 
Colagrossi A, SoutoIglesias A, Antuono M, et al. Smoothedparticlehydrodynamics modeling of dissipation mechanisms in gravity waves. Physical Review E, 2013, 87(2): 023302 doi: 10.1103/PhysRevE.87.023302

[17] 
Zhang DH, Shi YX, Huang C, et al. SPH method with applications of oscillating wave surge converter. Ocean Engineering, 2018, 152: 273285 doi: 10.1016/j.oceaneng.2018.01.057

[18] 
Macià F, Colagrossi A, Antuono M, et al. Benefits of using a Wendland kernel for freesurface flows//Proceedings of 6th Ercoftac Spheric Workshop on SPH Applications, 2011: 3037

[19] 
Meng Z, Zhang A, Wang P, et al. A targeted essentially nonoscillatory (TENO) SPH method and its applications in hydrodynamics. Ocean Engineering, 2022, 243: 110100 doi: 10.1016/j.oceaneng.2021.110100

[20] 
Liu GR, Liu MB. Smoothed Particle Hydrodynamics: A Meshfree Particle Method. World Scientific, 2003

[21] 
Bonet J, Lok T. Variational and momentum preservation aspects of smooth particle hydrodynamic formulations. Computer Methods in Applied Mechanics & Engineering, 1999, 180(12): 97115

[22] 
Wen H, Ren B, Yu X. An improved SPH model for turbulent hydrodynamics of a 2D oscillating water chamber. Ocean Engineering, 2018, 150: 152166 doi: 10.1016/j.oceaneng.2017.12.047

[23] 
Zago V, Schulize LJ, Bilotta G, et al. Overcoming excessive numerical dissipation in SPH modeling of water waves. Coastal Engineering, 2021, 170: 104018 doi: 10.1016/j.coastaleng.2021.104018

[24] 
Marrone S, Antuono M, Colagrossi A, et al. δSPH model for simulating violent impact flows. Computer Methods in Applied Mechanics and Engineering, 2011, 200(1316): 15261542 doi: 10.1016/j.cma.2010.12.016

[25] 
Liu MB, Liu GR. Smoothed particle hydrodynamics (SPH): An overview and recent developments. Archives of Computational Methods in Engineering, 2010, 17(1): 2576 doi: 10.1007/s1183101090407

[26] 
顾声龙, 吴玉帅, 解宏伟等. 基于CSPM方法对二维管嘴出流的数值模拟. 水利水电技术, 2016, 47(9): 3943 (Gu Shenglong, Wu Yushuai, Jie Hongwei, et al. CSPM methodbased numerical simulation on outflow from 2D pipe nozzle. Water Resources and Hydropower Engineering, 2016, 47(9): 3943 (in Chinese)
Gu Shenglong, Wu Yushuai, Jie Hongwei et al. . CSPM methodbased numerical simulation on outflow from 2D pipe nozzle. Water Resources and Hydropower Engineering, 2016, 47(09): 3943 (in Chinese)

[27] 
刘谋斌, 宗智, 常建忠. 光滑粒子动力学方法的发展与应用. 力学进展, 2011, 41(2): 217234
Liu Moubin, Zong Zhi, Chang Jianzhong. Developments and applications of smoothed particle hydrodynamics, Advances in Mechanics, 2011, 41(02): 217234 (in Chinese)

[28] 
Sun PN, Le Touze D, Oger G, et al. An accurate FSISPH modeling of challenging fluidstructure interaction problems in two and three dimensions. Ocean Engineering, 2021, 221: 108552 doi: 10.1016/j.oceaneng.2020.108552

[29] 
Oger G, Doring M, Alessandrini B, et al. An improved SPH method: Towards higher order convergence. Journal of Computational Physics, 2007, 225(2): 14721492 doi: 10.1016/j.jcp.2007.01.039

[30] 
Ganzenmüller GC, Hiermaier S, May M. On the similarity of meshless discretizations of peridynamics and smoothparticle hydrodynamics. Computers & Structures, 2015, 150: 7178

[31] 
Lyu HG, Deng R, Sun PN, et al. Study on the wedge penetrating fluid interfaces characterized by different densityratios: Numerical investigations with a multiphase SPH model. Ocean Engineering, 2021, 237: 109538

[32] 
杨秋足, 徐绯, 王璐等. 一种基于黎曼解处理大密度比多相流SPH的改进算法. 力学学报, 2019, 51(3): 730742
Yang Qiuzu, Xu Fei, Wang Lu, et al. An improved SPH algorithm for large density ratios multiphase flows based on riemann solution, Chinese Journal of Theoretical and Applied 2019, 51(3): 730742 (in Chinese)

[33] 
Antuono M, Marrone S, Colagrossi A, et al. Energy balance in the δSPH scheme. Computer Methods in Applied Mechanics and Engineering, 2015, 289: 209226 doi: 10.1016/j.cma.2015.02.004

[34] 
Colagrossi A, Bouscasse B, Antuono M, et al. Particle packing algorithm for SPH schemes. Computer Physics Communications, 2012, 183(8): 16411653 doi: 10.1016/j.cpc.2012.02.032

[35] 
Antuono M, Colagrossi A, Marrone S, et al. Freesurface flows solved by means of SPH schemes with numerical diffusive terms. Computer Physics Communications, 2010, 181(3): 532549 doi: 10.1016/j.cpc.2010.12.012

[36] 
Cui J, Chen X, Sun P. Numerical investigation on the hydrodynamic performance of a new designed breakwater using smoothed particle hydrodynamic method. Engineering Analysis with Boundary Elements, 2021, 130: 379403 doi: 10.1016/j.enganabound.2021.05.007

[37] 
Adami S, Hu XY, Adams NA. A generalized wall boundary condition for smoothed particle hydrodynamics. Journal of Computational Physics, 2012, 231(21): 70577075 doi: 10.1016/j.jcp.2012.05.005
